Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-03T23:50:21.015Z Has data issue: false hasContentIssue false

Study of Deep Levels by Admittance Spectroscopy in High Resistivity P-Type 6H-SiC Single Crystals

Published online by Cambridge University Press:  26 February 2011

A. O. Evwaraye
Affiliation:
Wright Laboratory, Materials Directorate, MLPO Wright-Patterson Air Force Base, Ohio 45433-7707
S. R. Smith
Affiliation:
Wright Laboratory, Materials Directorate, MLPO Wright-Patterson Air Force Base, Ohio 45433-7707
W. C. Mitchel
Affiliation:
Wright Laboratory, Materials Directorate, MLPO Wright-Patterson Air Force Base, Ohio 45433-7707
Get access

Abstract

Deep levels in high resistivity p-type 6H-SiC has been studied using optical admittance spectroscopy ( OAS ). Besides the conductance peak due to the band to band transitions, there are three conductance peaks in the spectra of most of the samples. The conductance peak due to the vanadium donor (0/+) level at EV+ 1.55 eV is identified. The persistent photoconductance (PPC) at this defect was also studied. The decay kinetics of the PPC follow the stretched exponential form. The potential barrier against recapture of carriers was determined to be 220 meV for the vanadium donor level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neudeck, P. G., Larkin, D. J., Powell, J. A., Matus, L. G. and Salupo, C. S., Appl. Phys. Lett. 64, 1386 (1994 )Google Scholar
2. Palmour, J. W., Edmond, J. A., Kong, H. S. and Carter, C. H. Jr, Physica B 185, 461 ( 1993 )Google Scholar
3. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 ( 1994 )Google Scholar
4. Brown, D. M., Downey, E. T., Ghezzo, M., Kretchmer, J. W., Saia, R. J., Lui, Y. S., Edmond, J. A., Gad, G., Pimbley, J. M. and Schneider, W. E., IEEE Trans.Electron Devices ED–40, 325(1993)Google Scholar
5. Maier, K., Muller, H. D. and Schneider, J., Materials Science Forum vols. 83–87, 1183 ( 1992)Google Scholar
6. Maier, K., Schneider, J., Wilkening, W., Leibenzeder, S. and Stein, R., Materials Science and Engineering, B11, 27( 1992 )Google Scholar
7. Schneider, J. and Maier, K., Physica B 185, 199 (1993)Google Scholar
8. Kunzer, M., Kaufman, U., Maier, K. and Schneider, J., Materials Science and Engineering B29, 118 (1995)Google Scholar
9. Schneider, J., Muller, H. D., Maier, K., Wilkening, W., Fuchs, F., Dornen, A., Leibenzeder, S., and Stein, R., Appl. Phys. Lett. 56, 1184 ( 1990 )Google Scholar
10. Vincent, G., Bois, D. and Pinard, P., J. Appl. Phys. 46, 5173 (1975 )Google Scholar
11. Duenas, S., Jaraiz, M., Vincente, J., Rubio, E., Bailon, L. and Barbolla, J., J. Appl. Phys. 61, 2541 ( 1987 )Google Scholar
12. Evwaraye, A. O., Smith, S. R., Skowronski, M. and Mitchel, W. C., J. Appl. Phys. 74, 5269 ( 1993 )Google Scholar
13. Williams, G. and Watts, D. C., Trans. Faraday Soc. 66, 80 ( 1970 )Google Scholar
14. Evwaraye, A. O., Smith, S. R. and Mitchel, W. C., J. Appl. Phys. (‘To Be Published’)Google Scholar