Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T04:54:20.514Z Has data issue: false hasContentIssue false

Structure-Property Relationships in SrRuO3 Epitaxial Thin Films

Published online by Cambridge University Press:  15 February 2011

J-P. Maria
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802
S. Trolier-McKinstry
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802
D. G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802
Get access

Abstract

Epitaxial SrRuO3 films were prepared on (001) SrTiO3 substrates by pulsed laser deposition. The film structure was characterized by 4-circle x-ray diffraction and the electrical behavior by temperature dependent resistivity measurements. With variations in the deposition conditions, significant changes in both structural and electrical properties were observed. When deposited under conditions favoring appreciable energetic bombardment, the SrRuO3 films on SrTiO3 exhibited extended in and out-of-plane lattice constants and increased values of resistivity; in addition, a depression of the Curie temperature was measured. SrRuO3 deposited under less aggressive conditions displayed structures and properties more similar to those associated with bulk crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eom, C. B., Cava, R. J., Flemming, R. M., Phillips, J. M., Dover, R. V. v., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, J. W. F., Science 258, 1766–9 (1992).Google Scholar
2. Bouchard, R. J. and Gillson, J. L., Mat. Res. Bull. 7, 873–8 (1972).Google Scholar
3. Yoshida, K., Maeno, Y., Nishizaki, S., and Fujita, T., Physica C 263, 519–22 (1996).Google Scholar
4. Geohegan, D., Appl. Phys. Lett. 60 (22), 2732–4 (1992).Google Scholar
5. Weideman, L. and Helvajian, H., J. Appl. Phys. 70 (8), 4513–22 (1991).Google Scholar
6. Kurogi, H., Yamagata, Y., Ikegami, T., Ebihara, K., Tong, B. Y., and Kumamoto, K., Ferroelectric Thin Films V, edited by Desu, S. B., Ramesh, R., Tuttle, B. A., Jones, R. E., Yoo, I. K., (Mat. Res. Soc. Proc. 433, Pittsburgh, PA 1996), p. 237–42.Google Scholar
7. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchia, R., Shinohara, M., Ishiyama, O., Yoshimoto, M., and Koinuma, H., Science 266, 1540–2 (1994).Google Scholar
8. Smith, D., Thin-Film Deposition (McGraw-Hill, Inc., New York, 1995).Google Scholar
9. Tarsa, E. J., Hachfeld, E. A., Quinlan, F. T., and Speck, J. S., Appl. Phys. Lett. 68 (4), 490–2 (1996).Google Scholar
10. Somekh, R. E., J. Vac. Sci. Tech. A, 2 (3), 1285–91 (1984).Google Scholar
11. Robinson, R. S., J. Vac. Sci. Tech. 16 (2), 185–8 (1978).Google Scholar
12. Kester, D. and Messier, R., J. Mat. Res. 8 (8), 1928–57 (1993).Google Scholar
13. Shikano, M., Huang, T., Itoh, M., and Nakamura, T., Solid State. Comm. 90 (2), 115–9 (1994).Google Scholar
14. Neumeier, J. J., Cornelius, A. L., and Schilling, J. S., Physica B 198, 324–8 (1993).Google Scholar