Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T07:59:20.359Z Has data issue: false hasContentIssue false

Structure Stability in Plasma Chemistry

Published online by Cambridge University Press:  10 February 2011

Ji-Tao Wang
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
David Wei Zhang
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
Zhi-Jie Liu
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
Jian-Yun Zhang
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
Shi-Jin Ding
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
Peng-Fei Wang
Affiliation:
Fudan University, Dept. of EFlectronic Eng., 200433 Shanghai, China.
Get access

Abstract

Diamond is a metastable phase, while graphite is a stable phase in low pressure equilibrium phase diagrams of carbon. However, diamond with saturated structure of π bonds is more stable than graphite with unsaturated structure of n bonds during the existence of activated particles generated by plasma. That provides an excellent explanation for the plasma and other activated CVD diamond growth under low pressure taking place with simultaneous graphite etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spitsyn, B.V., Growth of diamondfilms from the vapor phase, in Handbook of Crystal Growth, Vol.3, ed. by Hurle, T. J. (Elsevier Science, 1994), pp. 403456.Google Scholar
2. Wang, J.-T., Carlsson, J.-O., Surf. Coat. Technol 43/44, 1 (1990).Google Scholar
3. Wang, J.-T., Cao, C.-B., Zheng, P.-J., J. Electrochem. Soc. 141 (1), 278 (1994).Google Scholar
4. Wang, J.-T., Wan, Y.-Z., Zhang, David W., Liu, Z.-J., Huang, Z.-Q., J. Mater. Res. 12 (12), 3250 (1997).Google Scholar
5. Wang, J.-T., Wan, Y.-Z., Liu, Z.-J., Wang, H., Zhang, David W., Huang, Z.-Q., Materials Letters 13 (12), 311 (1998).Google Scholar
6. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, 3rd edn., (Interscience Publisher, New York, 1967), pp. 1517, p. 25, and pp. 75–80.Google Scholar
7. Van Rysselberghe, P., Bull. Ac. Roy. Belg. (Cl. Sc.), 22, p. 1330(1936); 23, p. 416 (1937), Presente par M. De Donder; Th. De Donder, P. van Rysselberghe, Theory of Affinity, (Stanford Press, 1936); 1. Prigogine, R. Defay, Chemical Thermodynamics, translated by D. H. Everett (Longmans Green and Co, Inc., London, 1954), p. 4 2.Google Scholar
8. Marinelli, M., Milani, E., Montuori, M. et al., J. Appl. Phys. 76(10), 5702 (1994).Google Scholar