Skip to main content Accessibility help

Structure and Stability of Grain Boundaries in Molybdenum with Segregated Carbon Impurities

  • R. Janisch (a1), T. Ochs (a1), A. Merkle (a1) and C. Elsässer (a1)


The segregation of interstitial impurities to symmetrical tilt grain boundaries (STGB) in bodycentered cubic transition metals is studied by means of ab-initio electronic-structure calculations based on the local density functional theory (LDFT). Segregation energies as well as changes in atomic and electronic structures at the ΣE5 (310) [001] STGB in Mo caused by segregated interstitial C atoms are investigated. The results are compared to LDFT data obtained previously for the pure Σ5 (310) [001] STGB in Mo. Energetic stabilities and structural parameters calculated ab initio for several crystalline Molybdenum Carbide phases with cubic, tetragonal or hexagonal symmetries and different compositions, MoCx, are reported and compared to recent high-resolution transmission electron microscopy (HRTEM) observations of MoCx, intergranular films and precipitates formed by C segregation to a Σ5 (310) [001] STGB in a Mo bicrystal.



Hide All
[1] Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995), ch. 7.
[2] Lejçek, P. and Hofmann, S., Critical Reviews in Solid State and Materials Sciences 20, 1 (1995).
[3] Hashimoto, M., Ishida, Y., Yamamoto, R. and Doyama, M., Acta metall. 32, 1 (1984).
[4] Pénisson, J. M., Bacia, M. and Biscondi, M., Philos. Mag. A 73, 859 (1996).
[5] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[6] Vanderbilt, D., Phys. Rev. B 32, 8412 (1985); S. G. Louie, S. Froyen and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).
[7] Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P. and Fähnle, M., J. Phys.: Condens. Matter 2, 4371 (1990); K. M. Ho, C. Elsässer, C. T. Chan and M. Fähnle, J. Phys.: Condens. Matter 4, 5189 (1992); B. Meyer, C. Elsässer and M. Fähnle, Fortran9O Program for Mixed-Basis Pseudopotential Calculations for Crystals (MPI für Metallforschung Stuttgart, unpublished).
[8] Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).
[9] Kittel, C., Introduction to Solid State Physics (Wiley, New York, 1986).
[10] Toth, L. E., The Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).
[11] Elsässer, C., Beck, O., Ochs, T. and Meyer, B., Mat. Res. Soc. Symp. Proc. Vol. 492, 121 (1998); T. Ochs, O. Beck, C. Elsässer and B. Meyer, Philos. Mag. A (in press, 1999); T. Ochs, C. Elsässer, M. Mrovec, V. Vitek, J. Belak and J. A. Moriarty, Philos. Mag. A (in press, 1999).
[12] Campbell, G. H., Foiles, S. M., Gumbsch, P., Rühle, M. and King, W. E., Phys. Rev. Lett. 70, 449 (1993).
[13] Campbell, G. H., Belak, J. and Moriarty, J. A., Acta mater. 47, 3977 (1999).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed