Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T03:37:01.316Z Has data issue: false hasContentIssue false

Structure and Magnetotransport Properties of La2/3Ca1/3MnO3 Thin Films Prepared by Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

O.I. Lebedev
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium on leave from Institute of Crystallography RAS, 117333 Moscow, Russia
G. van Tendeloo
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
S. Amelinckx
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
B. Leibold
Affiliation:
Max-Planck Institut für Festkörperforschung, D-70506 Stuttgart, Germany
H.-U. Habermeier
Affiliation:
Max-Planck Institut für Festkörperforschung, D-70506 Stuttgart, Germany
F. Phillipp
Affiliation:
Max-Planck Institut für Metallforschung, D-70506 Stuttgart, Germany
Get access

Abstract

La1-xCaxMnO3-δ (LCMO) thin films are grown by pulsed laser deposition on a (100) SrTiO3 substrate at temperatures between 530°C and 890°C. The magnetotransport properties show a high negative magnetoresistance and a shift of the maximum of the R(T) curve as function of temperature. The Curie temperature changes with deposition temperature and film quality in the range of 100-220K. The film quality is characterised by X-ray diffraction and transmission electron microscopy (TEM); film and target compositions were verified by atomic emission spectroscopy. The local structure of the film depends on the growth conditions and substrate temperature. TEM reveals a slight distortion of the film leading to a breakdown of the symmetry from orthorhombic to monoclinic. At the highest growth temperatures, a well defined interface is observed within the LCMO film, parallel to the substrate surface; this interface divides the film into two lamellae with a different microstructure. The lamella close to the substrate is perfectly coherent with the substrate, suggesting that it is strained as a result of the lattice parameter mismatch; the upper lamella shows a typical domain structure with unusual translation interfaces characterised by a displacement vector of the type 1/2 [010]m and 1/2[001]m when referred to the monoclinic lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Helmholt, R.v., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys.Rev.Lett. 71, 2331 (1993).Google Scholar
2. Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl.Phys.Lett. 63, 1990 (1993).Google Scholar
3. Ju, H.L., Kwon, C., Li, Q., Greene, R.L., and Venkatesan, T., Appl.Phys.Lett. 65, 2109 (1994).Google Scholar
4. Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W., Schiffer, P.E. and Ramirez, A.P., Phys.Rev.Lett. 75, 4488 (1995).Google Scholar
5. Hervieu, M., Van Tendeloo, G., Caignaert, V., Maignam, A., and Raveau, B., Phys.Rev.B 53, 14274 (1996).Google Scholar
6. Pomjakushin, V.Yu., Balagurov, A.M., Lobanov, M.V., Dyachenko, O.G., Antipov, E.V., Abakumov, A.M., Lebedev, O.I. and Van Tendeloo, G., MSU-HTSC V, Moscow, Russia, Book of Abstracts, F-22, 1998 Google Scholar