Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T10:40:33.677Z Has data issue: false hasContentIssue false

Structure and Electrical Properties of an Assembly of Au Nanoclusters

Published online by Cambridge University Press:  17 March 2011

G. Muralidharan
Affiliation:
Oak Ridge National Laboratory Oak Ridge, TN-37831-6123
L. Maya
Affiliation:
Oak Ridge National Laboratory Oak Ridge, TN-37831-6123
T. Thundat
Affiliation:
Oak Ridge National Laboratory Oak Ridge, TN-37831-6123
Get access

Abstract

Conduction through an assembly of nanosized clusters coupled by tunneling barriers is of significant interest both for understanding the fundamental physics involved and for potential applications. In this study, we describe a technique for preparing relatively large (dimensions of a few 100 µm to a few mm in size) monolayer films consisting of 3 nm diameter Au clusters coated with mercaptododecanoic acid, using low molecular weight-polymers as coupling agents. Electrical measurements of the assembly show non-linear characteristics. Below a certain threshold voltage, the current does not vary with an increase in voltage. Above this threshold voltage, current increases with voltage and can be described by a power-law relationship with an exponent close to unity. These characteristics of the I-V curve are discussed with specific reference to theoretical studies on conduction through an array of capacitance-coupled metallic islands and previous experimental results in similar systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Simon, U., Adv. Mater., 10, 1487 (1998).Google Scholar
2. Andres, R. P., Bein, T., Dorogi, M., Feng, S., Henderson, J. I., Kubiak, C. P., Mahoney, W., Oshifchin, R. G. and Reifenberger, R., Science, 272, 1323 (1996).Google Scholar
3. Clarke, L., Wybourne, M. N., Yan, Mingdi, Cai, S. X., Brown, L. O., Hutchison, J. and Keana, J. F., J. Vac. Sci. Technol. B, 15, 2925 (1997).Google Scholar
4. Wybourne, M. N., Clarke, L., Yan, M., Cai, S. X., Brown, L. O., Hutchison, J. and Keana, J. F. W., Jpn. J. Appl. Phys., 36, 7796 (1997).Google Scholar
5. Berven, C. A., Wybourne, M. N., Clarke, L., Hutchison, J. E., Brown, L. O., Mooster, J. L. and Schmidt, M. E., Superlattices and Microstructures, 27, 489 (2000).Google Scholar
6. Peschel, S. and Schmid, G., Angew. Chem. Int. Ed. Engl., 34, 1442 (1995).Google Scholar
7. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. F., Mahoney, W. J., Osifchin, R. G., Science, 273, 1690 (1996).Google Scholar
8. Zhao, M. and Crooks, R. M., Chem. Mater., 11, 3379 (1999).Google Scholar
9. Maya, L., Muralidharan, G., Thundat, T. and Kenik, E. A., Langmuir, 16, 9151 (2000).Google Scholar
10. Middleton, A. A. and Wingreen, N. S., Phys. Rev. Lett., 71, 3198 (1993).Google Scholar