Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T01:50:14.608Z Has data issue: false hasContentIssue false

Structural Transition in Cu/Fe Multilayered Thin Films

Published online by Cambridge University Press:  10 February 2011

Tai D. Nguyen
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Alison Chaiken
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Troy W. Barbee Jr.
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Get access

Abstract

Microstructural development of Fe and Cu in Cu/Fe multilayers of layer thickness 1.5–10 nm prepared on Si, Ge, and MgO substrates by ion beam sputtering has been studied using x-ray diffraction and cross-sectional transmission electron microscopy (TEM). High-angle x-ray results show an fcc Cu structure and a distorted bcc structure in the Fe layers at 5 nm-layer-thickness and smaller, and bcc Fe (110) and fcc Cu (111) peaks in the 10 nm-layer-thickness samples. Lowangle x-ray diffraction indicates that the layers in the samples grown on MgO substrates have a more uniform and smooth layered structure than the multilayers grown on Si and Ge substrates, which results from larger grains in the MgO substrate samples for the same layer thickness. Relationships among growth, microstructure, and interfaces with layer thickness are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baibich, M. N., Broto, J. M., Fert, A., Dau, Nguyen van, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
3. Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66 (16), 2152 (1991).Google Scholar
4. Petroff, F., Barthelemy, A., Mosca, D. H., Lottis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr., Loloee, R., and Lequien, S., Phys. Rev. B, 44 (10), 5355 (1991).Google Scholar
5. Cheng, S. F., Mansour, A. N., Teter, J. P., Hathaway, K. B., and Kabacoff, L. T., Phys. Rev. B, 47 (1), 206 (1993).Google Scholar
6. Chambers, S. A., Wagener, T. J., and Weaver, J. H., Phys. Rev. B, 36 (17), 8992 (1987).Google Scholar
7. Thomassen, J., Feldmann, B., and Wuttig, M., Surf. Sci. 264, 406 (1992).Google Scholar
8. Schmailzl, P., Schmidt, K., Bayer, P., Doll, R., and Heinz, K., Surf. Sci. 312, 73 (1994).Google Scholar
9. Clemens, B. M., Hufnagel, T. C., Kautzky, M. C., and Bobo, J.-F., to appear in MRS Proc. (1996).Google Scholar
10. Tanaka, N., Katayama, O., and Kizuka, T., J. Magn. Magn. Mat. 126, 55 (1993).Google Scholar
11. Hathaway, K. B., Cheng, S. F., and Mansour, A. N., J. Magn. Magn. Mat. 126, 79 (1993).Google Scholar
12. Katayama, T., Nishihara, Y., and Awano, H., J. Appl. Phys. 61 (8), 432 (1987).Google Scholar
13. van Noort, H. M., den Broeder, F. J. A., and Draaisma, H. J. G., J. Magn. Magn. Mat. 51, 273 (1985).Google Scholar
14. Draaisma, H. J. G., van Noort, H. M., and den Broeder, F. J. A., Thin Solid Films 126, 117 (1985).Google Scholar
15. Kozono, Y., Komuro, M., Narishige, S., Hanazono, M., and Sugita, Y., J. Appl. Phys. 61 (8), 4311 (1987).Google Scholar
16. Doi, M., Kanbe, T., and Matsui, M., J. Magn. Magn. Mat. 126, 443 (1993).Google Scholar
17. Giron, F. and Boher, P., Thin Solid Films 226, 9 (1993).Google Scholar
18. Chien, C. L., Liou, S. H., Kofalt, D.,; Yu, Wu; Egami, T., and McGuire, T. R., Phys. Rev. B, 33 (5), 3247 (1986).Google Scholar
19. Childress, J. R., Chien, C. L., Nathan, M., Appl. Phys. Lett. 56 (1), 95 (1990).Google Scholar
20. Nguyen, T. D., Gronsky, R., and Kortright, J. B., J. Elec. Microsc. Tech. 19, 473 (1991).Google Scholar
21. Sato, F., Tezuka, N., Sakurai, T., Miyazaki, T., IEEE Translation J. on Magnetics in Japan 9 (4), 100 (1994).Google Scholar
22. Parkin, S. S. P., Li, Z.G., and Smith, D.J., Appl. Phys. Lett. 58 (23), 2710 (1991).Google Scholar
23. Banerjee, R., Ahuja, R., and Fraser, H.L., Phys. Rev. Lett. 76 (20), 3778 (1996).Google Scholar
24. Asta, M. D., Sandia National Laboratories, private communication (1996).Google Scholar