Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T03:07:59.613Z Has data issue: false hasContentIssue false

Structural Properties of Self-Assembled Poly(zinc-bisquinoline)

Published online by Cambridge University Press:  10 February 2011

D. L. Thomsen III
Affiliation:
Department of Chemistry, Polymer Science Program Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
T. Phely-Bobin
Affiliation:
Department of Chemistry, Polymer Science Program Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
F. Papadimitrakopoulos*
Affiliation:
Department of Chemistry, Polymer Science Program Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
*
*To whom correspondence should be addressed
Get access

Abstract

Poly(zinc-bisquinoline) synthesized via a reactive self-assembly technique has been used as an active transport and emitting layer in light emitting diodes. This small molecule self-assembly, pioneered in our laboratory, was shown for the first time to produce pinhole-free films as thin as 400 Å. The ellipsometric trajectory and the refractive index of zinc bisquinoline self-assembled films on silicon were determined using spectroscopic ellipsometry. Psi and Del values were extrapolated at 633nm and 70 deg incidence for films ranging in thicknesses from 0 nm to 125 nm and plotted with model trajectories of 1.65, 1.70, and 1.75 refractive indices. Thin films over 20 nm followed a trajectory having similiar refractive indices between 1.65 and 1.70, indicative of homogenous films. A refractive index of 1.68 ± 0.01 at 633 nm was found to be among the highest reported values for a self-assembled metallorganic multilayer. Atomic force microscopy of a 90 Å film on silicon substrates with mean square roughness of c.a. 12 Å showed an approximate roughness of 14 - 17 Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Sagiv, J., J. Am. Chem. Soc., 102, p. 92 (1980).Google Scholar
2) Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc., 105, p. 4481 (1983).Google Scholar
3) Allara, D.L. and Nuzzo, R.G., Langmuir, 1, p. 45 (1985).Google Scholar
4) Tillman, N., Ulman, A., Schildkraut, J.S. and Penner, T.L., J. Am. Chem. Soc., 110, p. 6136 (1988).Google Scholar
5) Tillman, N., Ulman, A. and Penner, T.L., Langmuir, 5, p. 101 (1989).Google Scholar
6) Porter, M.D., Bright, T.B., Allara, D.L. and Chidsey, C.E.D., J. Am. Chem. Soc., 109, p. 3559 (1987).Google Scholar
7) Lee, H., Kepley, L.J., Hong, H.-G. and Mallouk, T.E., J. Am. Chem. Soc., 110, p. 617 (1988).Google Scholar
8) Lee, H., Kepley, L.J., Hong, H.-G., Akhter, S. and Mallouk, T.E., J. Phys. Chem., 94, p. 8869 (1990).Google Scholar
9) Katz, H.E., Schilling, M.L., Chidsey, C.E.D., Putvinski, T.M. and Hutton, R.S., Chem. Mater., 3, p. 699 (1991).Google Scholar
10) Katz, H.E., Scheller, G., Putvinski, T.M., Schilling, M.L., Wilson, W.L. and Chidsey, C.E.D., Science, 254, p. 1485 (1991).Google Scholar
11) Katz, H.E., Chem. Mater., 6, p. 2227 (1994).Google Scholar
12) Decher, G., Hong, J.D. and Schmitt, J., Thin Solid Films, 210/211, p. 831 (1992).Google Scholar
13) Decher, G., Lehr, B., Lowack, K., Lvov, Y. and Schmitt, J., Biosensors & Bioelectronics, 9, p. 677 (1994).Google Scholar
14) Decher, G., Lvov, Y. and Schmitt, J., Thin Solid Films, 244, p. 772 (1994).Google Scholar
15) Lvov, Y., Ariga, K., Ichinose, I. and Kunitake, T., J. Am. Chem. Soc., 117, p. 6117 (1995).Google Scholar
16) Aspnes, D.E. The Accurate Determination of Optical Properties by Ellipsometry; ademic Press: New York, 1985.Google Scholar
17) Thomsen, D.L., Higginson, K.A. and Papadimitrakopoulos, F., ACS Polymer Preprints, 38, p.353 (1997).Google Scholar
18) Phillips, J.P., Deye, J.F. and Leach, T., Anal. Chim. Acta, 23, p. 131 (1960).Google Scholar
19) Archer, R.D., Hardiman, C.J., Kim, K.S., Grandbois, E.R. and Goldstein, M. Metal-Chelate Polymers: Structural/property relationships as a function of the metal ion; Archer, R.D., Hardiman, C.J., Kim, K.S., Grandbois, E.R. and Goldstein, M., Ed.; Plenum Press: NY, 1985, pp 355.Google Scholar
20) Thomsen, D.L. and Papadimitrakopoulos, F., A.C.S. Polymer Preprints, 38, p. 398 (1997).Google Scholar
21) “Applied Materials Instruction Manual: Ellipsometer II,” Applied Materials, Inc, 1976.Google Scholar
22) Tompkins, H.G. A User's Guide to Ellipsometry; Academic Press: San Diego, CA, 1993.Google Scholar
23) Merritt, L.L., Cady, R.T. and Mundy, B.W., Acta. Cryst., 7, p. 473 (1954).Google Scholar
24) Berg, E.W. and Alam, A., Anal. Chim. Acta, 27, p. 454 (1962).Google Scholar
25) Drude, P., Ann. Phys. Chem., 36, p. 865 (1889).Google Scholar
26) Saxena, A.N., J. Opt. Soc. Am., 55, p. 1061 (1965).Google Scholar
27) Papadimitrakopoulos, F., Thomsen, D. L., and Phely-Bobin, T., ACS Polymer Preprints, Spring 1998.Google Scholar
28) Lvov, Y.M. and Decher, G., Crystallography Reports, 39, p. 628 (1994).Google Scholar