Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T07:11:50.208Z Has data issue: false hasContentIssue false

Structural Phase Diagram and Superconducting Behavior of the Ba1-Xkxbio3 System

Published online by Cambridge University Press:  28 February 2011

J. D. Jorgensen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Shiyou Pei
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. G. Hinks
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
B. Dabrowski
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. R. Richards
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
A. W. Mitchell
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Y. Zheng
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. T. Marx
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
S. K. Sinha
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Co., Annandale, NJ 08801
J. M. Newsam
Affiliation:
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
D. Vaknin
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104
A. J. Jacobson
Affiliation:
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

We have determined the crystal structures of five phases in the Bal-xKxBiO3 system for 0≤x≤0.5 and 10K≤T≤473K. Superconductivity occurs only in a cubic perovskite phase with the maximum Tc at the transition to an orthorhombic, Ibmm, phase. The commensurate structure of this orthorhombic phase, which involves only tilting of the Bi06 octahedra, provides no explanation for its non-metallic behavior. However, an incommensurate structural modulation, observed by electron diffraction, may provide a rationalization. Thus, the maximum Tc at the phase boundary may result from competition between superconductivity and a charge density wave. Further studies of the phase diagram at high temperatures, where controlled oxygen atmospheres are required, reveal an unusual reentrant formation of a potassium-containing impurity phase which explains the need for synthesis techniques that involve initially reacting in a reducing atmosphere, followed by oxygenation at lower temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hinks, D. G., Dabrowski, B., Jorgensen, J. D., Mitchell, A. W, Richards, D. R., Shiyou Pei, , and Donglu Shi, , Nature 333, 836 (1988).Google Scholar
2. Dabrowski, B., Hinks, D. G., Jorgensen, J. D., Kalia, R. K., Vashishta, P., Richards, D. R., Marx, D. T., and Mitchell, A. W., Physica C 156, 24 (1988).Google Scholar
3. Shiyou Pei, , Jorgensen, J. D., Dabrowski, B., Hinks, D. G., Richards, D. R., Mitchell, A. W., Newsam, J. M., Sinha, S. K., Vaknin, D., and Jacobson, A. J. Phys. Rev. B (in press).Google Scholar
4. Cava, R. J., Batlogg, B., Krajewski, J. J., Farrow, R. C., Rupp, L. W., Jr, ., White, A. E., Short, K. T., Peck, W. F., Jr, ., and Kometani, T. Y., Nature 332, 814 (1988).Google Scholar
5. Wignacourt, J. P., Swinnea, J. S., Steinfink, H., and Goodenough, J. B., Appl Phys. Lett. 53, 1753 (1988).Google Scholar
6. Hinks, D. G., Dabrowski, B., Richards, D. R., Jorgensen, J. D., Shiyou Pei, , and Zasadzinski, J. F. in High Temperature Superconductors: Relationships Between Properties. Structure and Solid-State Chemistry, edited by Jorgensen, J. D., Kitazawa, K., Tarascon, J.-M., Thompson, M. S., and Torrance, J. B. (Mater. Res. Soc. Proc. 156. Pittsburgh. PA 1989) pp. 357367.Google Scholar
7. Cox, D. E. and Sleight, A. W., Solid State Commun. 19, 969 (1976).Google Scholar
8. Thornton, G. and Jacobson, A. J., Acta Crystallogr. B 34, 351 (1978).Google Scholar
9. Mattheiss, L. F. and Hamann, D. R., Phys. Rev. B 28, 4227 (1983).Google Scholar
10. Cox, D. E. and Sleight, A. W., in Proceedings of the Conference on Neutron Scattering, Gatlinburg, TN 1976, edited by Moon, R. M. (National Technical Information Service, Springfield, VA 1976) pp. 45-54.Google Scholar
11. Shiyou Pei, , Zaluzec, N. J., Jorgensen, J. D., Dabrowski, B., Hinks, D. G., Mitchell, A. W., and Richards, D. R., Phys. Rev. 39, 811 (1989).Google Scholar
12. Hewat, E. A., Chaillout, C., odinho, M. G, Gorius, M. F., and Marezio, M., Physica C 157, 228 (1989).Google Scholar
13. Chaillout, C. and Remeika, J. P., Solid State Commun. 56, 833 (1985).Google Scholar
14. Varma, C. M., Phys. Rev. Lett. 61, 2713 (1988).Google Scholar
15. Mattheiss, L. F., Gyorgy, E. M., and Johnson, D. W., Phys. Rev. B 37, 3745 (1988).Google Scholar
16. Hinks, D. G., Richards, D. R., Dabrowski, B., Mitchell, A. W., Jorgensen, J. D., and Marx, D. T., Physica C 156, 477 (1988).Google Scholar
17. Jorgensen, J. D., Hinks, D. G., Shiyou Pei, , Dabrowski, B., Richards, D. R., Mitchell, A. W., Zheng, Y., and Volin, K. J., (to be published).Google Scholar