Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T23:56:35.399Z Has data issue: false hasContentIssue false

Structural Investigation of Sol-Gel-Derived Hybrid Siloxane-Oxide Materials Using 29Si MAS-NMR Spectroscopy

Published online by Cambridge University Press:  25 February 2011

F. Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Paris 6, 4 place Jussieu, 75252 Paris, France
L. Bois
Affiliation:
Chimie de la Matière Condensée, Université Paris 6, 4 place Jussieu, 75252 Paris, France
J. Livage
Affiliation:
Chimie de la Matière Condensée, Université Paris 6, 4 place Jussieu, 75252 Paris, France
S. Dire
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universita di Trento, 38050, Mesiano-Trento, Italy
Get access

Abstract

Hybrid siloxane-oxide systems were prepared by sol-gel techniques. Siloxane precursors are either monomeric species, dimethyldiethoxysilane, or OH-terminated polydimethylsiloxanes. The oxide component is introduced via metallic alkoxides, M(OR)n (M=Si, Ti, Zr). Transparent materials from flexible to brittle gels, can be obtained over a large M/siloxane range. The structure of the various systems was investigated by 29Si MAS-NMR. The signals due to the difunctional Si units, (CH3)2SiO, depend strongly on the nature of M and on the M/siloxane ratio. Structural models are proposed, ranging from single phase systems with highly interconnected siloxane and oxide units, to nanocomposites made of polysiloxane chains crosslinked with oxide-based particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, H., J. Non Cryst. Solids, 73, 681 (1985).Google Scholar
2. Schmidt, H., in Better Ceramics through Chemistry IV, edited by Zelinski, B.J.J., Brinker, C.J., Clark, D.E., Ulrich, D.R. (Mat. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990) pp 961.Google Scholar
3. Dirö, S., Babonneau, F., Sanchez, C., Livage, J., J. Mater. Chem., 2, 239 (1992)Google Scholar
4. Glaser, R.H., Wilkes, G.L., Bronnimann, C.E., J. Non Cryst. Solids, 113, 73 (1989).Google Scholar
5. Huang, H-H., Orler, B., Wilkes, G.L., Macromolecules, 30, 1322 (1987).Google Scholar
6. Babonneau, F., Bois, L., Maquet, J., Livage, J., in EUROGEL'91, Vilminot, S., Nass, R., Schmidt, H. Eds, Elsevier Science Publ. (1992) pp 319.Google Scholar
7. Helmer, J.D., Polmanteer, K.E., J. Applied Polymer Sci., 13, 2113 (1969).Google Scholar