Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T10:46:12.479Z Has data issue: false hasContentIssue false

Structural, Electronic and Defect Properties of Cu2ZnSn(S,Se)4 Alloys

Published online by Cambridge University Press:  20 May 2011

Shiyou Chen
Affiliation:
Key Laboratory for Computational Physical Sciences (MOE) and Surface Physics Laboratory, Fudan University, Shanghai 200433, China Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China
Xin-Gao Gong
Affiliation:
Key Laboratory for Computational Physical Sciences (MOE) and Surface Physics Laboratory, Fudan University, Shanghai 200433, China
Aron Walsh
Affiliation:
Department of Chemistry, University College London, London WC1E 6BT, UK
Su-Huai Wei
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, USA
Get access

Abstract

Kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) compounds are candidate low-cost absorber materials for thin-film solar cells, and a light-to-electricity efficiency as high as ~10% has been achieved in the solar cell based on their alloys, Cu2ZnSn(S,Se)4 (CZTSSe). In this paper, we discuss the crystal and electronic structure of CZTSSe alloys with different composition, showing that the mixed-anion alloys keep the kesterite cation ordering, and are highly miscible with a small band gap bowing parameter. The phase stability of CZTS and CZTSe relative to secondary compounds such as ZnS and Cu2SnS3 has also been studied, showing that chemical potential control is important for growing high-quality crystals, and the coexistence of these secondary compounds is difficult to be excluded using X-ray diffraction technique. Both CZTS and CZTSe are self-doped to p-type by their intrinsic defects, and the acceptor level of the dominant CuZn antisite is deeper than Cu vacancy. Relatively speaking, CZTSe has shallower acceptor level and easier n-type doping than CZTS, which gives an explanation to the high efficiency of CZTSSe based solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weber, A., Schmidt, S., Abou-Ras, D., Schubert-Bischoff, P., Denks, I., Mainz, R., and Schock, H. W., Appl. Phys. Lett. 95, 041904 (2009).Google Scholar
[2] Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S. J., Bojarczuk, N. A., Mitzi, D., and Guha, S., Appl. Phys. Lett. 97, 143508 (2010).Google Scholar
[3] Scragg, J. J., Dale, P. J., Peter, L. M., Zoppi, G., and Forbes, I., Phys. Status Solidi B 245, 1772 (2008).Google Scholar
[4] Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., Araki, H., and Takeuchi, A., Thin Solid Films 517, 2455 (2009).Google Scholar
[5] Kumar, Y. K., Babu, G. S., Bhaskar, P. U., and Raja, V. S., Solar Energy Materials and Solar Cells 93, 1230 (2009).Google Scholar
[6] Weber, A., Krauth, H., Perlt, S., Schubert, B., K̈otschau, I., Schorr, S., and Schock, H., Thin Solid Films 517, 2524 (2009).Google Scholar
[7] Chen, S., Gong, X. G., Walsh, A., and Wei, S.-H., Appl. Phys. Lett. 94, 041903 (2009).Google Scholar
[8] Chen, S., Gong, X. G., Walsh, A., and Wei, S.-H., Phys. Rev. B 79, 165211 (2009).Google Scholar
[9] Todorov, T. K., Reuter, K. B., and Mitzi, D. B., Adv. Mater. 22, E156 (2010).Google Scholar
[10] Guo, Q., Hillhouse, H. W., and Agrawal, R., J. Am. Chem. Soc. 131, 11672 (2009).Google Scholar
[11] Guo, Q., Ford, G. M., Yang, W. C., Walker, B. C., Stach, E. A., Hillhouse, H. W., and Agrawal, R., J. Am. Chem. Soc. 132, 17384 (2010).Google Scholar
[12] Perrson, C., J. Appl. Phys. 107, 053710 (2010).Google Scholar
[13] Paier, J., Asahi, R., Nagoya, A., and Kresse, G., Phys. Rev. B 79, 115126 (2009).Google Scholar
[14] Zhang, S. B., Wei, S.-H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B 57, 9642 (1998).Google Scholar
[15] Wei, S.-H. and Zhang, S. B., Phys. Rev. B 66, 155211 (2002).Google Scholar
[16] Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
[17] Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).Google Scholar
[18] Chen, S., Yang, J.-H., Gong, X. G., Walsh, A., and Wei, S.-H., Phys. Rev. B 81, 245204 (2010).Google Scholar
[19] Chen, S., Walsh, A., Yang, J.-H., Gong, X. G., Sun, L., Yang, P. X., Chu, J. H., and Wei, S.-H., Phys. Rev. B 81, 245204 (2010).Google Scholar
[20] Wei, S.-H., Ferreira, L. G., Bernard, J. E., and Zunger, A., Phys. Rev. B 42, 9622 (1990).Google Scholar
[21] Chen, S., Gong, X. G., and Wei, S.-H., Phys. Rev. B 75, 205209 (2007).Google Scholar
[22] Wei, S.-H. and Zunger, A., J. Appl. Phys. 78, 3846 (1995).Google Scholar
[23] Gloeckler, M. and Sites, J., Thin Solid Films 480481, 241 (2005).Google Scholar
[24] Ahn, S., Jung, S., Gwak, J., Cho, A., Shin, K., Yoon, K., Park, D., Cheong, H., and Yun, J. H., Appl. Phys. Lett. 97, 021905(2010).Google Scholar
[25] Wang, K., Shin, B., Reuter, K. B., Todorov, T., Mitzi, D., and Guha, S., Appl. Phys. Lett. 98, 051912 (2011).Google Scholar
[26] Hass, W., Rath, T., Pein, A., Rattenberger, J., Trimmel, G., and Hofer, F., Chem. Commun. 47, 2050 (2011).Google Scholar
[27] Todorov, T., Kita, M., Carda, J., and Escribano, P., Thin Solid Films 517, 2541 (2009).Google Scholar
[28] Chen, S., Gong, X. G., Walsh, A., and Wei, S.-H., Appl. Phys. Lett. 96, 021902 (2010).Google Scholar
[29] Zhang, S. B., Wei, S.-H., and Zunger, A., J. Appl. Phys. 83, 3192 (1998).Google Scholar