Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T03:58:56.122Z Has data issue: false hasContentIssue false

Structural Disorder in Hard Amorphous Carbon Films Implanted with Nitrogen Ions

Published online by Cambridge University Press:  21 February 2011

F.L. Freire Jr.
Affiliation:
Departamento de Fìsica, PUC-Rio, Rio de Janeiro, 22452, RJ, Brazil
D.F. Franceschini
Affiliation:
Departamento de Fìsica, PUC-Rio, Rio de Janeiro, 22452, RJ, Brazil
C.A. Achete
Affiliation:
PEMM, COPPE, Universidade Federal do Rio de Janeiro, 21910, Brazil
R.S. Brusa
Affiliation:
Dipartimento di Fisica, Universita di Trento, 38050, TN, Italy
G. Mariotto
Affiliation:
Dipartimento di Fisica, Universita di Trento, 38050, TN, Italy
G. P. Karwasz
Affiliation:
Dipartimento di Fisica, Universita di Trento, 38050, TN, Italy
R. Canteri
Affiliation:
Centro Materiali e Biofisica Medica, ITC, Trento,38050, TN, Italy
Get access

Abstract

Hard amorphous hydrogenated carbon films deposited by self-bias glow discharge were implanted at room temperature with 70 keV-nitrogen ions at fluences between 2.0 and 9.0×1016 N/cm2. The implanted samples were analyzed by Raman spectroscopy, SIMS and positron annihilation spectroscopy (Doppler broadening technique with the determination of the parameter S. For samples implanted with 2.0x1016 N/cm2 the S parameter follows the vacancies depth profile predicted by Monte Carlo simulation. For higher fluences we observed a reduction in the measured value of S. This result is discussed in terms of both hydrogen loss and structural modifications(increase of disorder at local scale and of the number of graphitic domains) induced in the carbon film by ion implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Robertson, J., Prog. Solid State Chem. 21, 199 (1991).Google Scholar
2 Amir, O. and Kalish, R., J. Appl. Phys. 70, 4958 (1991).Google Scholar
3 Franceschini, D.F., Acheté, C.A. and Freire, F.L. Jr., Appl. Pays. Lett. 60, 3229 (1992).Google Scholar
4 Compagnini, G. and Calcagno, L., Mater. Sei. Eng. R 13, 193 (1994).Google Scholar
5 Freire, F.L. Jr., Achete, C.A., Franceschini, D.F. and Mariotto, G., Appl. Phys. A 59, 667 (1994).Google Scholar
6 Schultz, P.J. and Lynn, K.G., Rev. Mod. Phys. 60, 701 (1988).Google Scholar
7 Freire, F.L. Jr., Achete, C.A., Brusa, R.S., Mariotto, G., Teng, X.T. and Zecca, A., Solid State Comm. 91, 965 (1994).Google Scholar
8 Freire, F.L. Jr., Achete, C.A., Brusa, R.S., Zecca, A. and Mariotto, G., Diamond and Related Materials 4, 499 (1995).Google Scholar
9 Asoka-Kumar, P., Dorfman, B.F., Abraizov, M.G., Yan, D. and Pollak, F.H., J. Vac. Sei. Technol. A 13, 1044 (1995).Google Scholar
10 Ziegler, J.F., Biersack, J.P. and Littmark, U., The stopping of Ions in Solids, (Pergamon Press, 1985).Google Scholar
11 Dillon, R.O., Woollam, J.A. and Katkanant, V., Phys. Rev B 29, 3482 (1984).Google Scholar