Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-08T02:57:05.907Z Has data issue: false hasContentIssue false

Structural Defects in Partially Relaxed InGaAs Layers

Published online by Cambridge University Press:  22 February 2011

P. Maigne
Affiliation:
Commnunications Research Centre, P.O Box 11490, Station H, Ottawa, Ontario, K2H 8S2, CANADA
J.-M. Baribeau
Affiliation:
Institutefo r MicrostructuralS ciences, National Research council, Ottawa, Ontario, K 1A OR6, CANADA
A.P. Roth
Affiliation:
Institutefo r MicrostructuralS ciences, National Research council, Ottawa, Ontario, K 1A OR6, CANADA
C.L. Boong
Affiliation:
Commnunications Research Centre, P.O Box 11490, Station H, Ottawa, Ontario, K2H 8S2, CANADA
Get access

Abstract

The development of novel optoelectronic devices using thick, defect free, strain free buffer layers mismatched to the substrate requires an understanding of the mechanisms responsible for the relaxation of the elastic strain. Using X-ray diffraction, we have studied the structural properties of partially relaxed InGaAs layers as a function of thickness and substrate misorientation and measured the residual strain. This study shows that strain free layers are difficult to achieve even for thicknesses well above the critical layer thickness. Our measurements also show that the relaxation of the strain induces geometrical effects such as a triclinic distortion of the epilayer unit cell and a tilt with respect to the substrate. These deviations from the ideal structure may seriously degrade the quality of optoelectronic active layers grown on relaxed lnGaAs buffer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 - Ramberg, L.P., Enquist, P.M., Chen, Y.K., Najjar, F.E., Eastman, L.F., Fitzgerald, E.A., Kavanagh, K.L.. J.Appl.Phys. 61, 1234, (1987).CrossRefGoogle Scholar
2 - Liu, S.M., Das, M.B., Peng, C.K., Klem, J., Henderson, T.S., Kopp, W.P., Morkoc, H. IEEE Trans. Electr. Dev. ED- 33(5), 576, (1986)Google Scholar
3 - Drigo, A.V., Aydiuli, Y., Carnera, A., Genova, F., Rigo, C., Ferrari, C., Franzosi, P., Salviati, G.. J.Appl.Phys. 66, 1975 (1989).Google Scholar
4 - Krisnamoorthy, V., Lin, Y.W., Calhoun, L., Liu, H.L., Park, R.M.. Appl.Phys.Lett. 61, 2680 (1992).Google Scholar
5 - Westwood, D.I., Woolf, D.A.. J.Appl.Phys. 73, 1187 (1993)Google Scholar
6 - Matthews, J.W., Blakeslee, A.E.. J.Cryst.Growth, 27, 118 (1974).Google Scholar
7 - Dodson, B.W., Tsao, J.Y.. Appl.Phys.Lett. 51, 1710 (1987).Google Scholar
8 - Dunstan, D.J., Kidd, P., Howard, L.K., Dixon, R.H.. Appl.Phys.Lett. 59, 3390 (1991)CrossRefGoogle Scholar
9 - Pesek, A., Hingerl, K., Riesz, F., Liscka, K.. Semicond. Scie. Technol. 6, 705 (1991).CrossRefGoogle Scholar
10 - Nagai, H.. J.Appl.Phys. 45, 3789 (1974).Google Scholar
11 - Olsen, G.H., Smith, R.T.. Phys.Stat.Sol.(a) 31, 739(1975).Google Scholar
12 - Breene, K.B.. J.Electron.Mat. 21, 409 (1992).CrossRefGoogle Scholar
13 - Lieberich, A., Levkoff, J.. J.Cryst.Growth 100, 330 (1990)Google Scholar