Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T18:12:41.346Z Has data issue: false hasContentIssue false

Structural Characterization of Ultrathin Epitaxial ErSi2−x on Si(111)

Published online by Cambridge University Press:  28 February 2011

F.H. Kaatz
Affiliation:
Department of Materials Science and Engineering, Laboratory for Research on the Structure of Matter and the University of Pennsylvania, Philadelphia PA 19104-6202
J. Van der Spiegel
Affiliation:
Department of Electrical Engineering, Laboratory for Research on the Structure of Matter and the University of Pennsylvania, Philadelphia PA 19104-6202
W.R. Graham
Affiliation:
Department of Materials Science and Engineering, Laboratory for Research on the Structure of Matter and the University of Pennsylvania, Philadelphia PA 19104-6202
Get access

Abstract

The epitaxial structure of ErSi2−x on Si(1 11) has been investigated using Rutherford backscattering (RBS) and transmission electron microscopy (TEM). Films 10 nm. thick show channeling minimum yields of 4% after room temperature deposition and annealing to 800°C. Plan view electron microscopy on ultrathin layers 0.5 nm. to 10 nm. thick reveals the formation of a complex microstructure involving vacancy ordering in these films. This superlattice structure is interpreted by considering domain formation and twinning in the heteroepitaxial ErSi2−x.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baptist, R., Ferrer, S., Grenet, G., and Poon, H. C., Phys. Rev. Lett. 64, 311 (1990).Google Scholar
2. Knapp, J.A. and Picraux, S.T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
3. d'Avitaya, F. Arnaud, Perio, A., Oberlin, J.C., Campidelli, Y., and Chroboczek, J.A., Appl. Phys. Lett. 54, 2198 (1989).Google Scholar
4. Kaatz, F.H., Siegal, M.P., Graham, W.R., Spiegel, J. Van der, and Santiago, J.J., Thin Solid Films 184, 325 (1990).Google Scholar
5. Siegal, M.P., Kaatz, F.H., Graham, W.R., Spiegel, J. Van der, and Santiago, J.J., J. Appl. Phys. 66, 2999 (1989).Google Scholar
6. Norde, H., Pires, J. de Sousa, d'Ieurle, F., Pesavento, F., Petersson, S., and Tove, P.A., Appl. Phys. Lett. 38, 865 (1981).Google Scholar
7. Tu, K.N., Thompson, R.D., and Tsaur, B.Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
8. Janega, P.L., McCaffrey, J., and Landheer, D., Appl. Phys. Lett. 55, 1415 (1989).Google Scholar
9. Tiren, J., Magnusson, U., Rosling, M., Bliechner, H., and Berg, S., Solid-S. Electron. 32, 993 (1989).Google Scholar
10. Baglin, J.E., d'Heurle, F.M., and Peterson, C.S., Appl. Phys. Lett. 36, 594 (1980).Google Scholar
11. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
12. Tung, R.T. and Shrey, F., Appl. Phys. Lett. 54, 852 (1989).Google Scholar
13. Sato, R., Doi, H., lshii, B., and Uchikoshi, H., Acta Cryst. 14, 763 (1961).Google Scholar
14. Kaatz, F.H., Graham, W.R., and J. Van der Spiegel, to be published.Google Scholar
15. Fugiwara, K., J. Phys. Soc. Japan 12, 7 (1957).Google Scholar
16. D'Anterroches, C., Perret, P., d'Avitaya, F. Arnaud, and Chroboczek, J.A., Thin Solid Films 184, xxx (1990).Google Scholar