Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:05:48.566Z Has data issue: false hasContentIssue false

Structural Characterization of Thin Metal Overlayers by X-ray Photoelectron and Auger-Electron Forward Scattering

Published online by Cambridge University Press:  25 February 2011

W. F. Egelhoff Jr.*
Affiliation:
Surface Science Division, National Bureau of Standards, Gaithersburg, MD 20899
Get access

Abstract

Forward scattering of XPS and Auger electrons by atoms in a crystalline lattice produce beams of enhanced intensity radiating out from the surface at angles corresponding to the internuclear axes present in the top few atomic layers. This effect has been applied to analyze the mechanism of surface segregation in ultrathin metal films, to analyze the interdiffusion at the interfaces of ultrathin films, and to assess the effects of substrate contamination on the growth of epitaxial films. The systems studied in this work are Cu, Ni, and Co on Ni(100), however the purpose of this work is not to investigate these particular systems but to use them to illustrate the capabilities of forward scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Siegbahn, K., Gelius, U., Siegbahn, H., and Olson, E., Phys. Scr. 1, 272 (1970); Phys. Lett. 32A, 221 (1970); C. S. Fadley and S. A. L. Berström, Phys. Lett. 35A, 375 (1971); N. E. Erickson, Phys. Scr. 16, 462 (1977); D. M. Zehner, J. R. Noonan, and L. H. Jenkins, Phys. Lett. 62A, 267 (1977); D. Briggs, R. A. Marbrow, and R. M. Lambert, Solid State Commun. 26, 1 (1978).CrossRefGoogle Scholar
[2] Goldberg, S. M., Baird, R. J., Kono, S., Hall, N. F. T., and Fadley, C. S., J. Elect. Spect. Rel. Phen. 21, 1 (1980).Google Scholar
[3] Egelhoff, W. F. Jr., Phys. Rev. B 30, 1052 (1984); W. F. Egelhoff, Jr., J. Vac. Sci. Technol. A 3, 1511 (1985); see also for some earlier suggestions that forward scattering might play a role: S. A. Chambers and L. W. Swanson, Surf. Sci. 131, 385 (1983); S. Takahashi, S. Kono, H. Sakurai, and T. Sagawa, J. Phys. Soc. Jpn. 51, 3296 (1982); and S. Kono, C. S. Fadley, N. F. T. Hall, and Z. Hussain, Phys. Rev. B 22, 6085 (1980).CrossRefGoogle Scholar
[4] More complex diffraction features in the intensity distribution are usually weak effects. See Refs. [5] – [8] for details.Google Scholar
[5] Bullock, E. L. and Fadley, C. S., Phys. Rev. B 31, 1212 (1985).Google Scholar
[6] Poon, H. C. and Tong, S. Y., Phys. Rev. B 30, 6211 (1984).CrossRefGoogle Scholar
[7] Tong, S. Y., Poon, H. C., and Snider, D. R., Phys. Rev. B 32, 2096 (1985).CrossRefGoogle Scholar
[8] Armstrong, R. A. and Egelhoff, W. F. Jr., Surf. Sci. 154, L225 (1985).Google Scholar
[9] Chambers, S. A., Greenlee, T. R., Smith, C. P., and Weaver, J. H., Phys. Rev. B 32, 4245 (1985); S. A. Chambers, S. B. Anderson, and J. H. Weaver, Phys. Rev. B. 32, 581, and 4872 (1985).Google Scholar
[10] This commercial instrument is specified only to establish the experimental conditions and does not signify any endorsement by N.B.S.Google Scholar
[11] Dutt, M. B., Sen, S. K., and Barva, A. K., Phys. Stat. Sol. (a) 56, 149 (1979).Google Scholar
[12] Maiya, P. S. and Blakely, J. M., J. Appl. Phys. 38, 698 (1967).Google Scholar
[13] Egelhoff, W. F. Jr., Phys. Rev. Lett. 50, 587 (1983).CrossRefGoogle Scholar
[13a] Ng, Y. S., Tsong, T. T., and McLane, S. B. Jr., Phys. Rev. Lett. 42, 588 (1979).Google Scholar
[14] Hulthgren, R., et al. Selected Values for the Thermodynamic Properties of Binary Alloys. Am. Soc. Met., Metals Park, Ohio, 1973.Google Scholar