Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T23:02:04.940Z Has data issue: false hasContentIssue false

Structural Characterization of Ion Beam Enhanced Solid Phase Epitaxial Regrowth by Raman, RBS, and X-Ray Analysis

Published online by Cambridge University Press:  21 February 2011

John F. Knudsen
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
R. C. Bowman Jr
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
P. M. Adams
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
R. Newman
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
J. P. Hurrell
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
R. C. Cole
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
L. F. Halle
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
D. H. Barker
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
Get access

Abstract

Epitaxial regrowth of deposited amorphous silicon has been previously described utilizing ion implantation amorphization, ion mixing and thermal anneal. This paper evaluates the effects of these process steps on crystalline quality utilizing Rutherford Backscattering (RBS), x-ray diffraction rocking curves and Raman scattering.

In situ (during implantation) regrowth results in defective crystallinity. In contrast, when there is no in situ regrowth, the post anneal crystallinity is equivalent by RBS and x-ray evaluation to virgin single crystal wafers. In situ regrowth is most pronounced during the high beam current ion mixing type implants which produce wafer temperatures of about 250°C. The final crystalline quality which results from different sequences of amorphization and ion mixing implants, is strongly dependent upon the amount of in situ regrowth which has occurred. The greater the in situ regrowth the poorer the final crystalline quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cole, R. C., Knudsen, J. F., Bowman, R. C. Jr., Adams, P. M., Hurrell, J. P., Newman, R., Halle, L. F., and Jamieson, D., J. Electrochemical Soc. (In Press) April 1988.Google Scholar
2. Mizushima, I., Kuwano, H., Hamasaki, T., Yoshii, T., and Kashiwagi, M., J. Appl. Phys. 63, 1065 (1988).Google Scholar
3. Cspregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906, (1978).Google Scholar
4. Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett., 55, 1482, (1985).Google Scholar
5. Dederichs, P. H., J. Phys. F: Metal Phys., 3, 471 (1973).Google Scholar
6. Coy, R. A., Thomas, J. E. Jr., and Baldwin, T. O., J. Appl. Phys. 42, 1238, (1971).Google Scholar
7. Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electrochem. Soc. 131, 675 (1984).Google Scholar