Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:41:56.916Z Has data issue: false hasContentIssue false

Structural Characterization of a Series of New Ternary η-Nitride Compounds

Published online by Cambridge University Press:  10 February 2011

K. S. Weil
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
P. N. Kumta
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

The structures of four new tungsten based, ternary nitride compounds, Fe3W3N, Ni6W6N, Ni2W4N, and Fe4W2N, each prepared using a complexed precursor synthesis route, have been determined by Rietveld analyses of the respective powder x-ray diffraction (PXRD) data. Each compound crystallizes in a relatively complex cubic structure which is in general isostructural with the η-carbide structure. However, subtle structural differences which are compositionally dependent do exist between each nitride and these will be examined in detail in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bem, D. S., Lampe-Onnerud, C. M., Olsen, H. P., and zur Loye, H-C., Inorg. Chem. 35, p. 581 (1996).Google Scholar
2. Weil, K. S. and Kumta, P. N., J. Solid State Chem. 128, p. 2 (1997).Google Scholar
3. Houmes, J. D., Bern, D. S., and zur Loye, H-C., in Covalent Ceramics II: Non-Oxides, edited by Barren, A. R., Fischman, G. S., Fury, M. A., and Hepp, A. F. (Mater. Res. Soc. Proc. 327, Pittsburgh, PA 1993), p. 153164.Google Scholar
4. Stadelmaier, H. H., in Developments in the Structural Chemistry of Allov Phases, edited by Giessen, B. C. (Plenum Press, New York, NY 1969), p. 141180.Google Scholar
5. Westgren, A. and Phragmen, G, Trans. Amer. Soc. Steel Treat. 13, p. 539 (1928).Google Scholar
6. Weil, K. S. and Kumta, P. N., Mat. Sci. and Eng. B 38, p. 109 (1996).Google Scholar
7. Izumi, F., in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, 1993), Chap. 13‥Google Scholar
8. Thompson, P., Cox, D. E., and Hastings, J. B., J Appl. Cryst. 20, p. 79 (1987).Google Scholar
9. Howard, C. J., J. Appl. Cryst. 15, p. 615 (1982).Google Scholar
10. Boudias, C. and Monceau, D., Ca. R. Ine Cristallographie, version 3.0 (1989).Google Scholar
11. Mueller, M. H. and Knott, H. W., Trans. Met. Soc. AIME 227, p. 674 (1963).Google Scholar
12. Hyde, B. G. and Andersson, S., Inorganic Crystal Structures. John Wiley & Sons, New York, 1989, pp. 347350.Google Scholar
13. Parthe, E., Jeitschko, W., and Sadagopan, V., Acta Cryst. 19, p. 1031 (1965).Google Scholar
14. Gudat, A., Hohn, P., Kniep, R., and Rabenau, A., Z. Naturforsch. B 46, p. 566 (1991).Google Scholar