Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T23:06:24.326Z Has data issue: false hasContentIssue false

Structural and Mechanical Properties of Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition With Varying Laser Intensity

Published online by Cambridge University Press:  10 February 2011

M. Bonelli
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Università di Trento, 1-38050 Povo (TN), Italy
A. C. Ferrari
Affiliation:
Department of Engineering, Cambridge University, Cambridge, UK
A. P. Fioravanti
Affiliation:
Dipartimento di Ingegneria Nucleare, Politecnico di Milano, 1-20133 Milano, Italy
A. Miotello
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Università di Trento, 1-38050 Povo (TN), Italy
P. M. Ossi
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Ingegneria Nucleare, Politecnico di Milano, 1-20133 Milano, Italy
Get access

Abstract

Diamond-like carbon (DLC) films have been prepared by pulsed laser deposition (PLD) (wavelength 248 nm), ablating highly oriented pyrolytic graphite (HOPG) at room temperature in a vacuum of 10−2Pa, at fluences between 0.5 and 35 Jcm−2. Films have been deposited on Si(100) with and without a SiC interlayer. Structural analysis, such as visible and UV Raman, Infrared and Electron Energy Loss (EEL) spectroscopies show that the films are hydrogen-free and undergo a transition, from mainly disordered graphitic to up to 80% tetrahedral amorphous carbon (ta-C), above a laser threshold fluence of 5 J cm−2. The measured residual stresses of as deposited ta-C films do not exceed 2 GPa. Scratch tests show excellent adhesion properties. Low friction coefficients (0.05-0.1) have been measured in ambient humidity. Nanoindentation indicates that film hardness is as high as 70 GPa

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Friedmann, T. A., Sullivan, J. P., Knapp, J. A., Tallant, D. R., Follstaedt, D. M., Medlin, D. L. and Mirkarimi, P. B., Appl. Phys. Lett. 71, 3820 (1997)Google Scholar
[2] Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amaratunga, G. A. J. and Milne, W. I., Phys. Rev. B, 48 4777 (1993)Google Scholar
[3] Pharr, G. M. and Oliver, W. C., MRS Bulletin 7, 1564 (1992).Google Scholar
[4] Prawer, S., Nugent, K. W., Lifshitz, Y., Lempert, G. D., Grossman, E., Kulik, J., Avigal, I. and Kalish, R., Diamond Rel. Mat. 5, 433 (1996).Google Scholar
[5] Mapelli, C., Castiglioni, C., Meroni, E. and Zerbi, G., Mullen, K., Phys. Rev. B, 60 12710 (1999).Google Scholar
[6] Ferrari, A. C., Roberston, J., Phys. Rev. B, submitted.Google Scholar
[7] Gilkes, K. W. R., Sands, H. S., Batchelder, D.N., Robertson, J., Milne, W.I., Appl. Phys. Lett., 70 1980 (1997)Google Scholar
[8] Dishler, B., Amorphous Hydrogenated Carbon Films, EMRS Symp proc. Vol 17, ed. Koidl, P. and Oelhafen, P. (Les Editions de Physique, Paris, 1987)Google Scholar
[9] Bassi, A. Li, Ferrari, A. C., Stolojan, V., Tanner, B. K., Robertson, J., Brown, L. M., Diamond Relat. Mater., to be published (1999).Google Scholar
[10] Shi, X., Flynn, D., Tay, B. K., Prawer, S., Nugent, K. W., Silva, S. R. P., Lifshitz, Y. and Milne, W. I., Phil. Mag. B 76, 351 (1997).Google Scholar
[11] Voevodin, A. A., Donley, M. S. and Zabinski, J. S., Surf. Coat. Technol. 92, 42 (1997).Google Scholar
[12] Voevodin, A. A., Donley, M. S., Zabinski, J. S. and Bultman, J. E., Surf. Coat. Technol. 76–77, 534 (1995).Google Scholar