Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T19:58:20.858Z Has data issue: false hasContentIssue false

Structural and magnetic properties of pure and cobalt doped Gallium Nitride nanocrystals

Published online by Cambridge University Press:  01 February 2011

Vottikondala Ganesh
Affiliation:
ganesh_cgc@rediffmail.com, Anna University, Crystal Growth Centre, Chennai, India
Suresh Sundaram
Affiliation:
suresh9111@gmail.com, Anna University, Guindy, Chennai, 600 025, India
Krishnan Baskar
Affiliation:
baskar@annauniv.edu, Anna University, Chennai, India
Get access

Abstract

In the present study pure and doped gallium nitride (GaN) nanocrystals were synthesized using gallium trichloride (GaCl3), ethylene diamine tetra acetic acid (EDTA) and cobalt chloride as raw materials at a temperature of 900 °C in ammonia (NH3) atmosphere. The XRD spectrum for pure and cobalt doped GaN nanocrystals shows the formation of single phase wurtzite structure. No impurity phases were observed in the X-ray diffraction pattern for 5% Co doped sample whereas secondary phases were observed when the doping concentration exceeds 5 %. Shift in X-ray diffraction peaks were observed in Co doped samples towards lower angle side compared to pure GaN, it confirms that the Co atoms introduces in to the GaN lattice. Transmission electron microscopy images were taken for pure and Co doped GaN. Hexagonal morphology was observed in pure GaN samples. The average size of the particle was found to be ˜20 nm for pure and Co doped GaN. The magnetic measurements were carried out for the Co (5% & 10%) doped samples both at 10K and 300K. Clear hysteresis loop in the magnetization curve suggest the presence of ferromagnetic behavior in cobalt doped GaN. Temperature dependent magnetization (M-T) measurements were also carried out for doped samples using Super Conducting Quantum Interface Device (SQUID) from 10K to 300K The results have been discussed and correlated to structural and magnetic properties of the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sasaki, T, Sonoda, S, Yamamoto, Y, Suga, K, Shimizu, S, Kindo, K J. Appl. Phys 91, 7911 (2002)Google Scholar
[2] Pearton, S. J. Abernathy, C. R. Thaler, G. T. Frazier, R. M. Norton, D. P. Ren, F. J. Phys. Condens. Matter 16 R209 (2004)Google Scholar
[3] Liu, C. Yun, F. and Morkok, H. J. Mater. Sci.: Mater. Electron. 16, 555 (2005).Google Scholar
[4] Overberg, ME, Abernathy, CR, Pearton, SJ, Theodoropoulou, NA, McCarthy, KT, Hebard, AF Appl. Phys. Lett. 79, 1312 (2001)Google Scholar
[5] Reed, M. L. El-Masry, N. A., Stadelmaier, H. H. Ritums, M. K. Reed, M. J. Parker, C. A. et al. Appl. Phys. Lett. 79, 3473 (2001)Google Scholar
[6] Schallenberg, T, Munekata, H Appl. Phys. Lett 89, 042507 (2006)Google Scholar
[7] Nazmul, A M, Sugahara, S, Tanaka, M Phys. Rev. B 67, 241308(R) (2003)Google Scholar
[8] Dietl, T. Ohno, H. Matsukara, F. Cibert, J. and Ferrand, D. Science 287, 1019 (2000).Google Scholar
[9] Sato, K, Yoshida, HK Jpn. J. Appl. Phys. 40, L485 (2001)Google Scholar
[10] Sawahata, J. Bang, H. Takiguchi, M. Seo, J. Yanagihara, H. Kita, E. and Akimoto, K.. phys. stat. sol.(c) 2, 7, 2458 (2005)Google Scholar
[11] Dhara, S., Sundaravel, B. Nair, K. G. M. Kesavamoorthy, R. and Valsakumar, M. C.. Appl. Phys. Lett. 88, 173110 (2006)Google Scholar
[12] Kim, W. Kang, H. J. Oh, S. K. Shin, S. W. Lee, J. H. Song, J. H. Noh, S. K. OH, S. J. Kim, S. J. and Kim, C. S.. Journal of Magnetics 11, 16 (2006)Google Scholar
[13] Iwata, K. Asahi, H. Yu, S.-J. and Gonda, S. Jpn. J. Appl. Phys. 35, L289 (1996)Google Scholar
[14] Ramachandran, S. Tiwari, A. and Narayani, J. J, Journal of Electronic materials 33, 1298 (2004)Google Scholar
[15] Mandal, S. K. Das, A. K. and Nath, T. K. J. Appl. Phys 100, 104315 (2006)Google Scholar
[16] Booth, J. G. and Marshall, J. D. Phys. Lett. A 32, 149, (1970).Google Scholar
[17] Sato, M. Kohiki, S. Hayakawa, Y. Sonda, Y. Babasaki, T. Deguchi, H. Mitome, M. J. Appl. Phys. 88, 2771 (2000)Google Scholar
[18] Park, Jung H. Kim, Min G. Jang, Hyun M. and Ryu, Sangwoo. Appl. Phys. Lett 84, 1338 (2004)Google Scholar
[19] Kane, M. H. Shalini, K. and Summers, C. J. J. Appl. Phys. 97, 023906 (2005)Google Scholar