Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-11T15:59:34.510Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Laser Crystallized Silicon Films

Published online by Cambridge University Press:  09 August 2011

T. Sameshima*
Affiliation:
Tokyo A&T University, Tokyo, 184-8588, Japan, tsamesim@cc.tuat.ac.jp
Get access

Abstract

Fundamental properties of silicon films crystallized by a 30-ns-pulsed XeCI excimer laser were discussed. Although crystallization of 50-nm thick silicon films formed on quartz substrates occurred through laser hearing at the crystalline threshold energy density of 160 mJ/cm2, a higher laser energy density at 360 mJ/cm2 was necessary to crystallize silicon films completely. Analyses of free carrier optical absorption revealed that phosphorus-doped silicon films with a carrier density about 2×1020 cm−3 had a high carrier mobility of 20 cm2/Vs for irradiation at the crystallization threshold energy density, while Hall effect measurements gave a carrier mobility of electrical current traversing grain boundaries of 3 cm2/Vs. This suggested that the crystalline grains had good electrical properties. As the laser energy density increased to 360 mJ/cm2 and laser pulse number increased to 5, the carrier mobility obtained by the Hall effect measurements markedly increased to 28 cm2/Vs because of improvement of grain boundary properties, while the carrier mobility obtained by analysis of free carrier absorption increased to 40 cm2/Vs. A post annealing method at 190°C with high-pressure H2O vapor was developed to reduce the density of defect states. Increase of carrier mobility to 500 cm2/Vs was demonstrated in the polycrystalline silicon thin film transistors fabricated in laser crystallized silicon films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sameshima, T., Usui, S. and Sekiya, M., IEEE Electron Dev. Lett. EDL-7, 276(1986).Google Scholar
2. Sera, K., Okumura, F., Uchida, H., Itoh, S, Kaneko, S. and Hotta, K., IEEE Trans. Electron Devices 36, 2868 (1989).Google Scholar
3. Serikawa, T., Shirai, S., Okamoto, A. and Suyama, S., Jpn. J. Appl. Phys. 28, L1871 (1989).Google Scholar
4. Noguchi, T. and Kanaishi, Y., IEEE Trans. Electron Device Lett. 10, 543 (1989).Google Scholar
5. Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S. and Tsuda, T., Jpn. J. Appl. Phys. 33, 5657(1994).Google Scholar
6. Shirai, S. and Serikawa, T., IEEE Trans.Electron Devices 39, 450 (1992).Google Scholar
7. Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M., IEEE Trans. Electron Devices 42, 251 (1995).Google Scholar
8. Lanbolt-Boernstein, , eds. Madelung, O., Schultz, M. and Weiss, H. (Springer-Verlag,Berlin 1984) Vol.17-c, Chap 6.Google Scholar
9. Carslaw, H. S. and Jaeger, J. C., Conduction oh Heat in Solid (Oxford University Press, Oxford 1959) Chaps. 2 and 10.Google Scholar
10. Goldsmith, A., Waterman, T. E. and Hirschhorn, H. J., Handbook of Thermophysical Properties of Solid Materials (Pergamon, New York, 1961) Vols. 1 and 3.Google Scholar
11. Auston, D. H., Golovchenko, J. A., Smith, P. R., Surko, C. M. and Venkatesan, T. N. C., Appl. Phys. Lett. 48, 33 (1982).Google Scholar
12. Sameshima, T., Usui, S. and Tomita, H., Jpn. J. Appl. Phys. 26, L1678 (1987).Google Scholar
13. Wood, R. F. and Giles, G. E., Phys. Rev. B23, 2923 (1981).Google Scholar
14. Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P. S., Phys. Pev. Lett. 48, 33 (1982).Google Scholar
15. Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl/ Phys. 28, 1789 (1989).Google Scholar
16. Glazov, V. M., Chizhenvskaya, S. N. and Glagoleva, N. N., Liquid Semiconductors, (plenum Press, New York, 1969) p60.Google Scholar
17. Iqbal, Z. and Veprek, S., J. Phys.C: Solid State Phys. 15, 377 (1982).Google Scholar
18. Weinstein, B. A. and Piermarini, G. J., Rhys. Rev. B12, 1172 (1975).Google Scholar
19. Chelikowsky, J. R. and Cohen, M. L., Phys. Rev. B10, 5095 (1974).Google Scholar
20. Engstrom, H., J. Appl. Phys. 51, 5245 (1980).Google Scholar
21. Sameshima, T., Saitoh, K., Satoh, M., Tajima, A. and Takashima, N., Jpn. J. Appl. Phys. 36, L1360 (1997).Google Scholar
22. Born, M. and Wolf, E., Principles of Optics (Pergamon, New York, 1974) Chaps 1 & 13.Google Scholar
23. Miyao, M., Motooda, T., Natuaki, N. and Tokuyama, T., Proc. of Laser and Electron-Beam Solid Interactions and Material (Elsvier, North Holland, 1981) p. 163.Google Scholar
24. Sameshima, T. and Usui, S., J. Appl. Phys., 74, 6592 (1993).Google Scholar
25. Irvin, J. C., Bell System Tech. J. 41, 387 (1962).Google Scholar
26. Rodder, M. and Aur, S., IEEE Electron Device Lett. 12, 233 (1991).Google Scholar
27. Ditizio, R. A., Liu, G., Fonash, S. J., Hseih, B.-C. and Greve, D. W., Appl. Phys. Lett. 56, 1140 (1990).Google Scholar
28. Wu, I-W., Lewis, A. G., Huang, T-Y and Chiang, A., IEEE Electron Device Lett. 10, 123 (1989).Google Scholar
29. Baert, K., Murai, H., Kobayashi, K., Namizaki, H. and Nunoshita, M., Jpn. J. Appl. Phys. 32, 2601 (1993).Google Scholar
30. Lee, T. C. and Neudeck, G. W., J. Appl. Phys. 54, 199 (1983).Google Scholar
31. Mitra, U., Rossi, B. and Khan, B., J. Electrochem. Soc. 138, 3420 (1991).Google Scholar
32. Jousse, D., Delage, S. L. and Iyer, S. S., Philos. Mag. B63, 443 (1991).Google Scholar
33. Yamamoto, I., Kuwano, H. and Saito, Y.: J.Appl. Phys. 71, 3350 (1992).Google Scholar
34. Sameshima, T. and Satoh, M., Jpn. J. Appl. Phys. 36, L687 (1997).Google Scholar
35. Sameshima, T., Sakamoto, K. and Satoh, M.: to be published in Thin Solid Films (1998).Google Scholar
36. Sameshima, T., Satoh, M., Sakamoto, K., Ozaki, K. and Saitoh, K., Jpn. J.Appl. Phys. 37, L1030 (1998).Google Scholar
37. Sameshima, T., Satoh, M., Sakamoto, K., Ozaki, K. and Saitoh, K., Jpn. J. Appl. Phys. 37, 4254 (1998).Google Scholar
38. Sano, N., Kohno, K., Hara, M., Sekiya, M. and Sameshima, T., Applied Phys. Lett., 65, 162 (1994).Google Scholar