Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T01:08:11.806Z Has data issue: false hasContentIssue false

Structural and Electrical Characterization of FeSix – Layers (1≤ X ≤2) Prepared by RTP of Fe Layers Sputtered on Si (100)

Published online by Cambridge University Press:  15 February 2011

M. Líbezný
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
J. Poortmans
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
P. H. Amesz
Affiliation:
Dept. Material Science, Rijksuniv. Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
R. A. Donaton
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Kyllesbech Larsen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
P. Vandenabeele
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
F. Jonckx
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
J. Nijs
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

β-FeSi2 is a semiconductor with a potential for photovoltaic and optoelectronic applications. The preparation of β-FeSi2-layers by rapid thermal processing (RTP) of Fe layers on silicon is investigated in this paper. Fe layers with typical thicknesses of 30 nm were sputtered on Si (100) substrates. We correlated the surface morphology of samples subjected to different RTP treatments with their composition and phase content. Phase transformations during the anneal were also studied by in-situ emissivity measurements. Rectifying and contacting behaviour of silicide/silicon heterojunctions prepared at several RTP-temperatures is presented at the end of this paper. Since it is not possible to prepare β-FeSi2-layers without a presence of either FeSi or α-FeSi2 metallic phases, these structures have poor heterojunction characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van den Hove, L. and De Keersmaecker, R. F., in Reduced Thermal Processing for ULSI, edited by Levy, R. A. (Plenum Press, New York, 1988), p. 53 Google Scholar
2. Shepherd, F. D. Jr., SPIE 1735, 250 (1992)Google Scholar
3. Chevrier, J., Natoli, J. Y., Berbezier, I., Ronda, A. and Derrien, J., Solid State Phenomena 32–33, 39 (1993)Google Scholar
4. Powalla, M. and Herz, K., Appl. Surf. Sci. 65–66, 482 (1993)Google Scholar
5. Derrien, J., Chevrier., J., Thanh, V. Le and Mahan, J. E., Appl. Surf. Sci. 56–58, 382 (1992)Google Scholar
6. Kyllesbech, K. Larsen, Lauwers, A., Maex, K. and Van Rossum, M. in Silicides. Germanides,.and their Interfaces, edited by Fathauer, R. W., Mantl, S., Schowalter, L. J. and Tu, K. N., (Mater. Res. Soc. Proc. 320, Pittsburgh, PA, 1994), p. 85 Google Scholar
7. Vandenabeele, P., Schreutelkamp, R. J., Maex, K., Vermeiren, C. and Coppye, W. in Advanced Metallization and Processing for Semiconductor Devices and Circuits – II, edited by Katz, A., Murarka, S. P., Nissim, Y. I. and Harper, J. M. E., (Mater. Res. Soc. Proc. 260, Pittsburgh, PA, 1992), p. 653 Google Scholar
8. Bradley, R. M., J. Appl. Phys. 60, 3146 (1986)Google Scholar