Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T21:10:04.024Z Has data issue: false hasContentIssue false

Structural and dielectric proper ties of CaCu3Ti4O12 thin film. deposited using laser ablation.

Published online by Cambridge University Press:  01 February 2011

V. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931
R.R. Das
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931
A. Dixit
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931
P. Bhattacharya
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931
R.S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931
Get access

Abstract

CaCu3Ti4O12 (CCT) thin films were deposited on Pt/TiO2/SiO2/Si substrates using pulsed laser deposition technique. During the thin films deposition, the substrate temperature was varied in the range of 700–800 °C with a constant O2 pressure of 200 mTorr. X-ray diffraction showed the polycrystalline nature of the films. The dielectric properties of the films were studied in metal insulator configuration. Films grown at higher substrate temperature exhibited highest value of dielectric permittivity (∼2200). Micro Raman spectroscopy was used to study the vibrational modes of the CCT thin films in comparison with the bulk ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFrences

1. Deschanvres, A, Raveau, B., Tollemer, F., Bull. Soc. Chim. Fr. (1967) 4077.Google Scholar
2. Subramaniam, M. A., Duan, D. Li, Reisner, B.A, and Sleight, A. W, J. Solid State Chem. 151 (2000) 323.10.1006/jssc.2000.8703Google Scholar
3. Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P., Science 293 (2001), 673.10.1126/science.1061655Google Scholar
4. Koitzsch, A., Blumberg, G., Gozar, A., Dennis, B., Ramirez, A.P., Trebst, S. and Wakimoto, S., Phys. Rev. B 65 (2002), 052406 10.1103/PhysRevB.65.052406Google Scholar
5. Cohen, M. H., Neaton, J. B., He, L. and Vanderbilt, D., J. Appl. Phys. 94 (2003) 3299 10.1063/1.1595708Google Scholar
6. Zhao, Y. L., Pan, G. W., Ren, Q. B., Cao, Y. G., Feng, L. X. and Jiao, Z. K., Thin Solid Films 445 (2003, 7.10.1016/S0040-6090(03)00666-7Google Scholar
7. Fang, L. and Shen, M., Thin Solid Films 440 (2003) 60.10.1016/S0040-6090(03)00825-3Google Scholar
8. Litvinchuk, A. P., Chen, C. L., Kolev, N., Popov, V. N., Hadjiev, V. G., Lliev, M. N., Bontchev, R. P. and Jacobson, A. J., Phys. Stat. Sol. (a) 195 (2003) 453 10.1002/pssa.200305930Google Scholar
9. Kolev, N., Bontchev, R.P., Jacobson, A. J., Popov, V. N., Hadjiev, V. G., Livinchuk, A. P., and Lliev, M. N., Phys. Rev. B 66 (2002) 132102.10.1103/PhysRevB.66.132102Google Scholar
10. Gupta, Vinay and Mansingh, Abhai, Phys. Rev. B 49 (1994) 1989.10.1103/PhysRevB.49.1989Google Scholar
11. Mansingh, A., Bull Mater. Sci. 2 (1980) 325.10.1007/BF02908579Google Scholar