Skip to main content Accessibility help
×
Home

Strong Photoluminescence in the Near-Infrared from Colloidally-Prepared HgTe Nanocrystals

  • M. T. Harrison (a1), S. V. Kershaw (a1), M. G. Burt (a1), A. L. Rogach (a2), A. Kornowski (a2), A. Eychmüller (a2) and H. Weller (a2)...

Abstract

We report here the first measurement of strong near-infrared room temperature photoluminescence (PL) from colloidally-prepared HgTe nanocrystals. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) measurements indicate that the nanoparticles are in the cubic coloradoite phase, with a diameter of approximately 4 nm. The absorption spectrum shows a pronounced electronic transition in the near-infrared, and the broad PL appears to consist of several overlapping features between 800 and 1400 nm with a peak at 1080 nm, which represent a dramatic shift from bulk HgTe behaviour. The quantum efficiency (QE) of the freshly prepared sample is around 50%, which is among the highest ever reported for a nanocrystalline material. Over a period of several days, the luminescence shifts further into the infrared yielding more dominant longer wavelength features. The observation of this strong infrared luminescence makes this material a promising candidate for application in optical telecommunication systems.

Copyright

References

Hide All
1. Efros, Al. L. and Efros, A. L., Sov. Phys. – Semicond. 16, p. 772 (1982).
2. Rossetti, R., Nakahara, S., and Brus, L. E., J. Chem. Phys. 79, p. 1,086 (1983).
3. Weller, H., Angew. Chem. Int. Ed. Engl. 32, p. 41 (1993).
4. Weller, H., Adv. Mater. 5, p. 88 (1993).
5. Alivisatos, A. P., J. Phys. Chem. 100, p. 13,226 (1996).
6. Zhang, J. Z., Acc. Chem. Res. 30, p. 423 (1997).
7. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, p. 699 (1997).
8. Feldheim, D. L. and Keating, C. D., Chem. Soc. Rev. 28, p. 1(1998).
9. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature, 370, p. 354 (1994).
10. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, p. 1,316 (1995).
11. Gao, M., Richter, B., Kirstein, S., and Möhwald, H., J. Phys. Chem. B. 102, p. 4,096 (1998).
12. Landolt-Bornstein, , Numerical Data and Functional Relationships in Science and Technology: New Series. Vol.17b: Semiconductors, Springer-Verlag, Berlin, (1982), p. 239 & 465.
13. Rajh, T., Micic, O. I., and Nozik, A. J., J. Phys. Chem. 97, p. 11,999 (1993).
14. Hässelbarth, A., Eychmüller, A., Eichberger, R., Giersig, M., Mews, A., and Weller, H., J. Phys. Chem. 97, p. 5,333 (1993).
15. Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I. G., Diesner, K., Chemseddine, A., Eychmüller, A., and Weller, H., J. Phys. Chem. 98, p. 7,665 (1994).
16. Rogach, A. L., Katsikas, L., Kornowski, A., Su, D., Eychmüller, A., and Weller, H., Ber. Bunsenges. Phys. Chem. 100, p. 1,772 (1996).
17. Kakudo, Masao and Kasai, Nobutami, X-Ray Diffraction by Polymers, Kodansha Scientific, Tokyo, (1972), p. 329.

Strong Photoluminescence in the Near-Infrared from Colloidally-Prepared HgTe Nanocrystals

  • M. T. Harrison (a1), S. V. Kershaw (a1), M. G. Burt (a1), A. L. Rogach (a2), A. Kornowski (a2), A. Eychmüller (a2) and H. Weller (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed