Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:35:39.850Z Has data issue: false hasContentIssue false

Strong light confinement in microporous photonic silicon structures

Published online by Cambridge University Press:  01 February 2011

G. Lérondel
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique Université de Technologie de Troyes- CNRS (FRE 2671) 12 rue Marie Curie BP 2060 10010 Troyes cedex -, France
P. Reece
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique Université de Technologie de Troyes- CNRS (FRE 2671) 12 rue Marie Curie BP 2060 10010 Troyes cedex -, France
A. Bruyant
Affiliation:
School of Physics University of New South Wales, Sydney 2052 NSW, Australia
M. Gal
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique Université de Technologie de Troyes- CNRS (FRE 2671) 12 rue Marie Curie BP 2060 10010 Troyes cedex -, France
Get access

Abstract

We have recently reported the fabrication of Si based subnanometer linewidth microcavities and omnidirectionnal mirrors. The structures were made of microporous silicon by electrochemical anodization. The structure high quality and the observation of omnidirectionnal stop bands have been made possible by the optimisation of the starting material, the etching conditions, and the structure design. In this paper we discuss more specifically the choice of these parameters considering the material intrinsic limitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Vincent, G., Appl. Phys. Lett. 64, 2367 (1994)Google Scholar
Berger, M. G., Frohnhoff, S., Theiss, W., Rossow, U., Muender, H., Porous silicon science and technology, ISBN 3–540–58936–8, Springer p. 345 (1994)Google Scholar
[2] Chan, S. and Fauchet, P. M. Appl. Phys. Lett. Vol 75(2) pp. 274276 (1999).Google Scholar
[3] Diener, J., Künzner, N., Kovalev, D., Gross, E., Yu. Timoshenko, V., Polisski, G., and Koch, F. Appl. Phys. Lett. Vol 78(24) pp. 38873889 (2001)Google Scholar
[5] Lérondel, G., Romestain, R., Barret, S., J. Appl. Phys. 81 (9), p6171 (1997)Google Scholar
[6] Setzu, S., Lérondel, G., Romestain, R., J. Appl. Phys. 84, p3129 (1998)Google Scholar
[7] Reece, P. J., Lérondel, G., Zheng, W. H. and Gal, M., Appl. Phys. Lett. 81, 4895 (2002).Google Scholar
[8] Bruyant, A., Lérondel, G., Reece, P. J. and Gal, M., Appl. Phys. Lett. 82, 4895 (2003)Google Scholar
[9] Chan, M.C., So, S. K., Cheah, K. W. J. Appl. Phys. 79, p3273 (1996).Google Scholar
[10] Fink, Y., Winn, J. N., Fan, S., Chen, C., Michel, J., Joannopoulos, J. D., and Thomas, E. L., Science 282, 1679 (1998).Google Scholar