Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-25T02:34:36.909Z Has data issue: false hasContentIssue false

Strong dependence of the fundamental band gap on the alloy composition in cubic InxGa1-xN and InxAl1-xN alloys

Published online by Cambridge University Press:  01 February 2011

Z. Dridi
Affiliation:
SIFCOM, UMR6176, CNRS-ENSICAEN, 6, Bld Maréchal Juin, 1450 Caen, France Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria.
B. Bouhafs
Affiliation:
Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria.
P. Ruterana
Affiliation:
SIFCOM, UMR6176, CNRS-ENSICAEN, 6, Bld Maréchal Juin, 1450 Caen, France
Get access

Abstract

Ab initio total energy calculations, based on the full-potential augmented plane wave method within the local density approximation, are used to study the influence of alloying on the structural and electronic properties of cubic InxGa1-xN and InxAl1-xN ordered alloys in the chalcopyrite and luzonite structures.

We have investigated the lattice parameters and band gap energies. The lattice parameters, exhibit an upward bowing of -0.05 Å and -0.15 Å, respectively for the InxGa1-xN and InxAl1-xN alloys. The composition dependence of the band gap shows a bowing parameter of 1.36 eV for InxGa1-xN. The band gap InxAl1-xN alloys exhibits a bowing parameter of 3.19 eV, and a direct to indirect band gap transition at x (Al) = 0.83. The large bowing effect in InxAl1-xN alloys has been discussed in terms of a composition dependent bowing parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
2. Davydov, V. Yu., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A. V., Aderhold, J., Semchinova, O., and Graul, J., phys. stat. sol. (b) 229, R1 (2002).Google Scholar
3. Davydov, V. Yu., Klochikhin, A. A., Emtsev, V. V., Ivanov, S. V., Vekshin, V. V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A. V., Hashimoto, A., Yamamoto, A., Aderhold, J., Graul, J., Haller, E. E., phys. stat. sol. (b) 230, R4 (2002).Google Scholar
4. Wu, J., Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
5. Perry, P. B. and Rutz, R. F., Appl. Phys. Lett. 33, 319 (1978).Google Scholar
6. Paisley, M. J., Sitar, Z., Posthill, J. B. and Davis, R. F., J. Vac. Sci. Technol. A 7, 701 (1989).Google Scholar
7. Okumura, H., Hamaguchi, H., Koizumi, T., Balanishi, K., Nagatomo, T. and Yoshida, S., J. Cryst. Growth 189/190, 390 (1998).Google Scholar
8. Tabata, A., Lima, A. P., Teles, L. K., Scolfaro, L. M. R., and Leite, J. R., Lemos, V., Schöttker, B., Frey, T., Schikora, D., and Lischka, K., Appl. Phys. Lett. 74, 362 (1999).Google Scholar
9. Harima, H., Inoue, T., and Nakashima, S., Okumura, H., Ishida, Y., Yoshida, S., Koizumi, T., Grille, H. and Bechstedt, F., Appl. Phys. Lett. 74, 191 (1999).Google Scholar
10. Tabata, A., Leite, J. R., Lima, A. P., Silveira, E., Lemos, V., Frey, T., As, D. J., Schikora, D., and Lischka, K., Appl. Phys. Lett. 75, 1095 (1999).Google Scholar
11. Guo, Q., Ogawa, H. and Yoshida, A., J. Cryst. Growth. 146, 462 (1995).Google Scholar
12. Goano, M., Bellotti, E., Ghillino, E., Garetto, C., Ghione, G., and Brennan, K. F., J. Appl. Phys. 88, 6476 (2000).Google Scholar
13. Kim, K. S., Saxler, A., Kung, P., Razeghi, M. and Lim, K. Y., Appl. Phys. Lett. 71, 800 (1997).Google Scholar
14. Peng, T., Piprek, J., Qui, G., Olowolafe, J. O., Unruh, K. M., Swann, C. P., and Schubert, E. F., Appl. Phys. Lett. 71, 2439 (1997).Google Scholar
15. Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H. and Akasaki, I., Appl. Phys. Lett. 76, 876 (2000).Google Scholar
16. Lukitsch, M. J., Danylyuk, Y. V., Naik, V. M., Huang, C., Auner, G. W., Rimai, L., and Naik, R., Appl. Phys. Lett. 79, 632 (2001).Google Scholar
17. Kim, K., Limpijumnong, S., Lambrecht, W. R. L., and Segall, B., III-V Nitrides, edited by Ponce, F. A., Moustakas, T. D., Akasaki, I., and Monemar, B. A., Materials Research Society Symposium Proceedings. 449, 929 (1997).Google Scholar
18. Van Schilfgaarde, M., Sher, A., Chen, A.-B., J. Crys. Growth 178, 8 (1997).Google Scholar
19. Wright, A. F. and Nelson, J. S., Appl. Phys. Lett. 66, 3465 (1995).Google Scholar
20. Teles, L. K., Scolfaro, L. M. R., Leite, J. R., Furthmüller, J. and Bechstedt, F., J. Appl. Phys. 92, 7109 (2002).Google Scholar
21. Ferhat, M. and Bechstedt, F., Phys. Rev. B 65, 075213 (2002).Google Scholar
22. Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
23. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
24. Landau, L. D. and Lifshitz, E. M., Statistical Physics, Chap. 14 (Pergamon, Oxford, 1969).Google Scholar
25. Mbaye, A. A., Wood, D. M., and Zunger, A., Phys. Rev. B 37, 3008 (1988).Google Scholar
26. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
27. Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 5390 (1944).Google Scholar
28. Strite, S., Ruan, J., Li, Z., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J., and Morkoç, H., J. Vac. Sci. Technol. B 9, 1924 (1991).Google Scholar
29. Strite, S., Chandrasekhar, D., Smith, D. J., Sariel, J., Chen, H., Teraguchi, N., and Morkoç, H., J. Cryst. Growth 127, 204 (1993).Google Scholar
30. Sherwin, M. E. and Drummond, T. J., J. Appl. Phys. 69, 8423 (1991).Google Scholar
31. Petrov, I., Mojab, E., Powell, R. C., and Greene, J. E., Appl. Phys. Lett. 60, 2491 (1992).Google Scholar
32. Lambrecht, W. R. L., Proc. Topical Workshop on III-V Nitrides, Nagoya (1995).Google Scholar
33. Bellaiche, L., Mattila, T., Wang, L-W., Wei, S-H. and Zunger, A., Appl. Phys. Lett. 74, 1842 (1999).Google Scholar
34. Wright, A. F. and Nelson, J. S., Appl. Phys. Lett. 66, 3051 (1995).Google Scholar
35. Teles, L. K., Furthmüller, J., Scolfaro, L. M. R., Leite, J. R., and Bechstedt, F., Phys. Rev. B 63, 085204 (2001).Google Scholar
36. Osamura, K., Naka, S. and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
37. Nakamura, S., The Blue Laser Diode GaN Based Light Emitters and Lasers (Springer, Berlin, 1997);Google Scholar
Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, L1059 (1997).Google Scholar
Nakamura, S., Solide State Commun. 102, 237 (1997).Google Scholar
38. McCluskey, M. D., Van de Walle, C. G., Master, C. P., Romano, L. T., and Johnson, N. M.. Appl. Phys. Lett. 72, 2725 (1998).Google Scholar
39. Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
40. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
41. Onuma, T., Chichibu, S. F., Uchinuma, Y., Sota, T., Yamaguchi, S., Kamiyama, S., Amano, H., and Akasaki, I., The 5th International Conference on Nitride Semiconductors (ICNS-5), Nara, Japan, No We-A6.6 (2003).Google Scholar
42. Dridi, Z., Bouhafs, B., and Ruterana, P., Semicond. Sci. Technol. 18, 850 (2003).Google Scholar