Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T17:29:16.950Z Has data issue: false hasContentIssue false

Stress engineering using AlN/GaN superlattices for epitaxy of GaN on 200 mm Si wafers

Published online by Cambridge University Press:  18 December 2014

Jie Su
Affiliation:
Veeco MOCVD Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, USA
Eric A. Armour
Affiliation:
Veeco MOCVD Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, USA
Balakrishnan Krishnan
Affiliation:
Veeco MOCVD Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, USA
Soo Min Lee
Affiliation:
Veeco MOCVD Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, USA
George D. Papasouliotis
Affiliation:
Veeco MOCVD Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, USA
Get access

Abstract

Stress control using AlN/GaN superlattices (SLs) for epitaxy of GaN on 200 mm Si (111) substrates is reported. Crack-free 2 μm GaN layers were grown over structures containing 50 to 100 pairs of 3-5 nm AlN/10-30 nm GaN SLs. Compressive and tensile stress can be precisely adjusted by changing the thickness of the AlN and GaN layers in the SLs. For a constant period thickness, the effects of growth conditions, such as growth rate of GaN, V/III ratio during AlN growth, and growth temperature, on wafer stress were investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ideda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., and Yoshida, S., Proc. IEEE 98, 1151 (2010).Google Scholar
Hoke, W. E., Chelakara, R. V., Bettencourt, J. P., Kazior, T. E., LaRoche, J. R., Kennedy, T. D., Mosca, J.J., Torabi, A., Kerr, A. J., Lee, H.S., and Palacios, T., J. Vac. Sci. Technol. B 30, 02B101-1 (2012).CrossRefGoogle Scholar
Dadgar, A., Schulze, F., Wienecke, M., Gadanecz, A., Blasing, J., Veit, P., Hempel, T., Diez, A., Christen, J., and Krost, A., New J. Phys. 9, 389 (2007).CrossRefGoogle Scholar
Tripathy, S., Lin, V. K.X., Dolmanan, S. B., Tan, J. P. Y., Kajen, R. S., Bera, L. K., Teo, S. L., Kumar, M. K., Arulkumaran, S., Ng, G. I., Vicknesh, S., Todd, S., Wang, W.Z., Lo, G. Q., Li, H., Lee, D., and Han, S., Appl. Phys. Lett. 101, 082110 (2012).CrossRefGoogle Scholar
Liu, H. F., Dolmanan, S. B., Zhang, L., Chua, S. J., Chi, D. Z., Heuken, M., and Tripathy, S., J. Appl. Phys. 113, 023510 (2013).CrossRefGoogle Scholar
Cheng, K., Leys, M., Degroote, S., Germain, M., and Borghs, G., Appl. Phys. Lett. 92, 192111 (2008).CrossRefGoogle Scholar
Feltin, E., Beaumont, B., Laugt, M., de Mierry, P., Vennegues, P., Lahreche, H., Leroux, M., and Gibart, P., Appl. Phys. Lett. 79, 3230 (2001).CrossRefGoogle Scholar
Kim, T., Yang, S., Son, J., Hong, Y., and Yang, G., J. Korean Phys. Soc. 50, 801 (2007).CrossRefGoogle Scholar
Egawa, T., (IEDM Tech. Dig. 2012), pp613–616; Ubukata, A., Ikenaga, K., Akutsu, N., Yamaguchi, A., Matsumoto, K., Yamazaki, T., and Egawa, T., J. Crystal Growth 298, 198 (2007).Google Scholar
Hearne, S., Chason, E., Han, J., Floro, J., Figiel, J., Hunter, J., Amano, H., Tsong, I., Appl. Phys. Lett. 74, 356 (1999).CrossRefGoogle Scholar
Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J., Chason, E., and Figiel, J., Jpn. J. Appl. Phys. 37, L1540 (1998).CrossRefGoogle Scholar
Hearne, S., Han, J., Lee, S., Floro, J., Follstaedt, D., Chason, E., and Tsong, I., Appl. Phys. Lett. 76, 1534 (2000).CrossRefGoogle Scholar