Skip to main content Accessibility help
×
Home

The Stress Driven Rearrangement Instabilities in Electronic Materials and in Helium Crystals

  • Michael Grinfeld (a1), Pavel Grinfeld (a2), Haruo Kojima (a3), John Little (a4), Ryuichi Masutomi (a3), Per-Olof. Persson (a2) and Tsvetanka Zheleva (a4)...

Abstract

At present, there is a consensus that various Stress Driven Rearrangement Instabilities (SDRI) are the implications of the mathematically rigorous theoretical Gibbs thermodynamics. Many applied researchers and practitioners believe that SDRI are also universal physical phenomena occurring over a large range of length scales and applied topics. There is a multitude of publications claiming experimental observation of the SDRI based phenomena. This opinion is challenged by other highly respected scholars claiming theoretical inconsistencies and multiple experimental counterexamples. Such an uncertainty is too costly for further progress on the SDRI topic. The ultimate goal of our project is to resolve this controversy.

The project includes experimental, theoretical, and numerical studies. Among various plausible manifestations of SDRI, the authors focused only on two most promising for which the validity of the SDRI has already been claimed by other researchers: a) stress driven corrugations of the solid-melt phase interface in macroscopic quantum 4He and b) the dislocation-free Stranski-Krastanov pattern of growth of semiconductor quantum dots. We devised a program and experimental set-ups for testing applicability of the SDRI mechanisms using the same physical systems as before but using implications of the SDRI theory for 2D patterning which have never been tested in the past.

Copyright

References

Hide All
1. Gibbs, J.W., Trans. Connect. Acad. Sci., 3, pp. 108 – 248, 343 – 524 (1878).
2. Grinfeld, M.A., Dokl. AN SSSR,. 265(6), (1982).
3. Grinfeld, M.A., Soviet Physics Dokl., 290, 1358 (1986).
4. Grinfeld, M.A. Thermodynamic Methods in the Theory of Heterogeneous Systems. Sussex, Longman, 1991.
5. Nozieres, P., “Growth and Shape of Crystals”. (Lectures given at Beg-Rohu Summer School (Brittany, 1989), Solids Far From Equilibrium, ed. Godreche, C., (Cambridge University Press, 1991).
6. Caroli, B.,. Caroli, C., Roulet, B. and Voorhees, P.W., Acta Metall. 37, 257 (1989).
7. Srolovitz, D.J., Acta Metall. 37, 621 (1989).
8. Leo, P.H. and Sekerka, R.F., Acta Metall. 37, 3119, 3139 (1989).
9. Asaro, R.J. and Tiller, W.A., Metallurgical Transactions, 3, 1789 (1972).
10. Thiel, M., Willibald, A., Evers, P., Levchenko, A., Leiderer, P. and Balibar, S., Europhys. Lett. 20, 707 (1992).
11. Torii, R.H. and Balibar, S., J. Low Temp. Phys. 89, 391, (1992).
12. LeGoues, F.K., Copel, M. and Tromp, R.M., Phys. Rev., B, 42(18), 11690 (1990).
13. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lettr., 64(16), 1943 (1990).
14. Nozières, P., J. Phys. 3, 681 (1993).
15. Grinfeld, M.A., J. Nonlinear Sci., 3, 35 (1993).
16. Grinfeld, M.A., Phys. Rev. B, 49, 3 (1994).
17. Grinfeld, M.A., Scanning Microscopy, 8, 869 (1995).
18. Balibar, S. and Nozieres, P., Solid State Communications, 92 (1994).
19. Bimberg, D., Grundmann, M., and Ledentsov, N. N., Quantum Dot Heterostructures, Wiley, 1999.
20. Yao, T. and Woo, J.-C., Physics and Applications of Semiconductor Quantum Structures, Vector, 2001.
21. Kassner, K., and Misbah, C., Europhys. Lett., 28, 245250, (1994);
Shenoy, V. B. and Freund, L. B., Mech., J. Phys. Solids, 50, 1817 (2002);
Kassner, K., Misbah, C., Muller, J, et al., Phys. Rev. E, 63, 036117 (2001);
Zhang, Y. W. and Bower, A. F., Mech., J. Phys. Solids 47, 2273 (1998); J. Appl. Phys., 95, 7813 (2004).
22. Bonnetier, E., Falk, R. and Grinfeld, M., Math. Model. Num. Anal., 33, 573591 (1999).
23. Spencer, B. J. and Tersoff, J., Phys. Rev. Lett., 79, 4858 (1997).
24. Sethian, J.. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry. Cambridge University Press, 1999.
25. Osher, S. and Fedkiw, R.. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002.
26. Strang, G. and Fix, G.. An Analysis of the Finite Element Method. Wellesley-Cambridge Press, 1973.
27. Strang, G. and Persson, P.-O.. “Circuit simulation and moving mesh generation”. Proc. of Int. Symp. on Comm. and Inform. Tech. 2004 (ISCIT 2004), November 2005.

The Stress Driven Rearrangement Instabilities in Electronic Materials and in Helium Crystals

  • Michael Grinfeld (a1), Pavel Grinfeld (a2), Haruo Kojima (a3), John Little (a4), Ryuichi Masutomi (a3), Per-Olof. Persson (a2) and Tsvetanka Zheleva (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed