Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T07:27:29.645Z Has data issue: false hasContentIssue false

Stress Controlled MBE-growth of GaN:Mg and GaN:Si

Published online by Cambridge University Press:  10 February 2011

Y. Kim
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 yihwanki@uclink4.berkeley.edu
R. Klockenbrink
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
C. Kisielowski
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
J. Krueger
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
D. Corlatan
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
G. S Sudhir
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Y. Peyrot
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Y. Cho
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
M. Rubin
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

The stress in GaN thin films grown on sapphire is shown to be determined by lattice mismatch, by differences in thermal-expansion-coefficients and by the incorporation of point defects. It can be controlled by the buffer layer thickness, the buffer layer growth temperature, the V/III flux ratio, and by doping. It is argued that a Fermi-level dependence of defect formation energies affects the material stoichiometry and thereby lattice constants and stresses. We observed that stress relaxation occurred if the stresses exceeded a critical compressive or tensile stress value. The stress changes materials properties. As an example, it is demonstrated that the electron Hall mobility in GaN:Si can be increased with constant electron carrier concentration if large compressive stress is present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).10.1143/JJAP.34.L797Google Scholar
2. Kahn, M. A., Bhattarai, A., Kuzina, J. N., Olsen, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
3. Nakamura, S., et al., The second Inter. Conf. on Nitride Semiconductor (ICNS'97), Tokushima, Japan. (Nov, 1997).Google Scholar
4. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett., 48, 353 (1986).10.1063/1.96549Google Scholar
5. Nakamura, S., Jpn. J. Appi. Phys., 30, L1705 (1991).10.1143/JJAP.30.L1705Google Scholar
6. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J.W. III, Jones, E., Liliental-Weber, Z., Fujii, H., Rubin, M., Weber, E.R., Bremser, M.D., and Davis;, R.F. Phys. Rev. B 54, 17745 (1996).10.1103/PhysRevB.54.17745Google Scholar
7. Kisielowski, C., Krüger, J., Leung, M. S.H., Klockenbrink, R., Fujii, H., Suski, T., Sudhir, G.S., Ager, J.W. III., Rubin, M., and Weber, E.R., Proceedings of the International Conference on the Physics of Semiconductors(ICPS), Berlin 1996 (World Scientific, Singapore) 513 (1996).Google Scholar
8. Fujii, H., Kisielowski, C., Kroger, J., Klockenbrink, R., Leung, M. S.H., Sudhir, G.S., Hyunchul, Sohn, Mike, Rubin, Weber, E.R.,submitted to J. Appl. Phys., 1997; and Mat. Res. Soc. Symp. Vol.449, 227 (1997).10.1557/PROC-449-227Google Scholar
9. Krüger, J., Kisielowski, C, Klockenbrink, R., Sudhir, G.S., Kim, Y., Rubin, M., and Weber, E.R., Mat. Res. Soc. Symp. Vol.468, 299 (1997).10.1557/PROC-468-299Google Scholar
10. Lagerstedt, O. and Monemar, B., Phys. Rev. B 19, 3064 (1979).10.1103/PhysRevB.19.3064Google Scholar
11. Anders, A., and Anders, S., Plasma Sources Sci. Technol. 4, 571 (1995).10.1088/0963-0252/4/4/008Google Scholar
12. Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys., 27, L1384 (1988).10.1143/JJAP.27.L1384Google Scholar
13. Kruger, J., Sudhir, G. S., Corlatan, D., Cho, Y., Kim, Y., Klockenbrink, R., Rouvimov, S., Liliental-Weber, Z., Kisielowski, C., Rubin, M., Weber, E.R., McDermott, B. T., Pittman, R., and Gertner, E. R., these Proceedings.Google Scholar
14. Sudhir, G. S., Perot, Y., Klockenbrink, R., Kim, Y., Kisielowski, C., Rubin, M. D., and Weber, E. R., these Proceedings.Google Scholar
15. Neugebauer, J., and Van de Walle, C., Phys. Rev. B. 50, 8067 (1994).10.1103/PhysRevB.50.8067Google Scholar
16. Shur, M., Gelmont, B., and AsifKhan, M., J. Electr. Mater, 25, ,777 (1996).10.1007/BF02666636Google Scholar