Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-12T21:56:19.695Z Has data issue: false hasContentIssue false

Strength-Flaw Relationship of Corroded Pristine Silica Studied by Atomic Force Microscopy

Published online by Cambridge University Press:  21 February 2011

Qian Zhong
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Daryl Inniss
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Charles R. Kurkjian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Glass strength is controlled by microscopic surface flaws. Attempts to quantify the strengthflaw relationship for corroded silica fibers have been unfruitful, principally because of the difficulty in identifying the nanometer-sized, strength-controlling flaws on a uniformly corroded surface. In this paper, studies on corrosion of pristine silica optical fibers by HF vapor are presented. The HF-treated fibers exhibit strength degradation and contain well-defined, spatially-resolved surface flaws, which are characterized with an atomic force microscope. Excellent strength agreement is obtained for all chemically corroded fibers when the flaws are modeled as partially embedded hemispheres (i.e., blunt flaws). The implication of these results to the corrosion and fatigue process of silica glasses is discussed, since all previous analyses have assumed the strength-controlling flaws to be sharp.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Griffith, A. A., Philos. Trans. Roy. Soc. London, A221, 163 (1920).Google Scholar
2. Kurkjian, C. R. and Paek, U. C., 42[3], 251 (1983).CrossRefGoogle Scholar
3. Han, W. and Tomozawa, M., J. Non-Cryst. Solids, 122,90 (1990).CrossRefGoogle Scholar
4. Martin, D. M., Akinc, M., and Oh, S. M., J. Am. Ceram. Soc., 61,308 (1978).CrossRefGoogle Scholar
5. Ernsberger, F. M., Proc. 8th Intl. Congress on Glass, London 1968 (Soc. of Glass Technol., Sheffield, England, 1969).Google Scholar
6. Kurkjian, C. R., Krause, J. T. and Paek, U. C., J. de Phys. Coll (Les Ulis, Fr.), 43[12], C9585, (1982).Google Scholar
7. Bouten, P. C. P. and With, G. de, J. Appl. Phys., 64, 3890 (1988).CrossRefGoogle Scholar
8. Kurkjian, C. R., J. Non-Cryst. Solids, 102, 71 (1988).CrossRefGoogle Scholar
9. Proctor, B. A., Whitney, I., and Johnson, J. W., Proc. Roy. Soc., 297A, 534 (1967).Google Scholar
10. France, P. W., Duncan, W. J., Smith, D. G., and Beales, K. J., J. Mater. Sci., 18, 785, (1983).CrossRefGoogle Scholar
11. Matthewson, M. J., Kurkjian, C. R., and Gulati, S. T., J. Am. Ceram. Soc., 69[11], 815 (1986).CrossRefGoogle Scholar
12. Krause, J. T., Testardi, L. R., and Thurston, R. N., Phys. Chem. Glasses, 20[6], 135 (1979).Google Scholar
13. Gao, S. (private communication).Google Scholar
14. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B., Surf. Sci. Lett., 290, L688 (1993).Google Scholar
15. Robinson, R. S. and Yuce, H. H., J. Am. Ceram. Soc., 74[4], 814 (1991).CrossRefGoogle Scholar
16. Yuce, H. H., Varachi, J. P. Jr., Kilmer, J. P., Kurkjian, C. R. and Matthewson, M. J., Optical Fiber Comm. Conf., Post-Deadline Papers, (OSA, Washington, DC, 1992) PD21.Google Scholar
17. Kennedy, M. T., Cuellar, E., and Roberts, D. R., SPIE Proceedings, 1580, 152 (1991).CrossRefGoogle Scholar
18. Kennedy, M. T., Cuellar, E., Roberts, D. R., and Stipek, M. M., SPIE Proceedings, 1791, 67 (1991).CrossRefGoogle Scholar
19. Inglis, C. E., Trans. Inst. Nav. Archit., 55, 219 (1913).Google Scholar
20. Roach, D. H., and Cooper, A. P., in Strength of Inorganic Glass, edited by Kurkjian, C. R. (Plenum, New York, 1985).Google Scholar
21. Inniss, D. and Zhong, Q., J. Appl. Phys. (submitted).Google Scholar