Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:29:52.202Z Has data issue: false hasContentIssue false

Strain-Induced Magnetic Properties of Pr0.67Sr0.33MnO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

X. W. Wu
Affiliation:
Physics Department, University of Wisconsin-Madison, Madison, WI 53706
M. S. Rzchowski
Affiliation:
Physics Department, University of Wisconsin-Madison, Madison, WI 53706
H. S. Wang
Affiliation:
Physics Department, Pennsylvania State Universit, University Park, Pennsylvania 16802
Qi Li
Affiliation:
Physics Department, University of Wisconsin-Madison, Madison, WI 53706
Get access

Abstract

We report the temperature dependence of the magnetic anisotropy in both compressive and tensile strained films of Pr0.67Sr0.33MnO3 (PSMO). Compressive strain induced by growth on LaAlO3 (LAO) substrates results in a spontaneous out-of-plane magnetization, while tensile strain (grown on SrTiO3) results in in-plane magnetization. The coefficient of linear proportionality between the magnetic anisotropy energy and the tetragonal strain for both compressive and tensile strained PSMO films is larger than that found previously in strained La0.67Ca0.33MnO3 films. From the data, we estimate a 20 unit cell magnetic domain wall width for PSMO / LAO. Scattering from such a narrow domain wall could produce a potentially significant contribution to the resistivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Helmolt, R. von, Wecher, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
2. Jin, S., Tiefel, T. H., Mccormack, M., Fastnacht, R. A., Ramech, R. and Chen, L. H., Science 264, 413 (1994).Google Scholar
3. Steenbech, K., Eich, T., Kirsch, K., O'Donnell, K., and Steinberb, E., Appl. Phys. Lett. 71, 968 (1997).Google Scholar
4. Sun, J. Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A., Gupta, A., Lu, Yu, Gong, G. Q., and Xiao, Gang, Appl. Phys. Lett. 69, 3266 (1996).Google Scholar
5. Perekalina, T. M., Lipinski, I. E., Timofeeva, V. A., and Cherkezyan, S. A., Sov. Phys. Solid State 32, 1827 (1991).Google Scholar
6. Searle, C. W. and Wang, S. T., Can. J. Phys. 47, 2703 (1969).Google Scholar
7. O'Donnell, J., Rzchowski, M. S., Eckstein, J. N. and Bozovic, I., Appl. Phys. Lett. 72, 1175 (1998).Google Scholar
8. Nath, T. K., Rao, R. A., Lavric, D., Eom, C. B., Wu, L. and Tsui, F., Appl. Phys. Lett. 74, 1615 (1999).Google Scholar
9. Wang, H. S., Li, Q., Liu, K. and Chien, C. L., Appl. Phys. Lett. 74, 2212 (1999).Google Scholar
10. Wang, H. S. and Li, Q., Appl. Phys. Lett. 73, 2360 (1998).Google Scholar
11. Rao, R. A., Lavric, D., Nath, T. K., Eom, C. B., Wu, L. and Tsui, F., J. Appl. Phys. 85, 4794 (1999).Google Scholar
12. Sun, J. Z., Abraham, D. W., Rao, R. A. and Eom, C. B., Appl. Phys. Lett. 74, 3017 (1999).Google Scholar
13. Gan, Q., Rao, R. A., Eom, C. B., Garrent, J. L. and Lee, M., Appl. Phys. Lett. 72, 978 (1998).Google Scholar
14. Suzuki, Y., Hwang, H. Y., Cheong, S-W, Dover, R. B. van, Asamitsu, A. and Tokura, Y., J. of Appl. Phys. 83, 7064 (1998).Google Scholar
15. Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P., Electrodynamic of Continuous Media, 2nd ed. (Butterworth Heinemann, Oxford, 1995).Google Scholar
16. Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972).Google Scholar
17. Clark, A. E., in Ferromagnetic Materials, edited by Wohlfarth, E. P. (North-Holland, Amsterdam 1980), Vol. 1.Google Scholar
18. Femandez-Baca, J.A., Dai, P., Hwang, H.Y., Kloc, C., and Cheong, S.-W., Phys. Rev. Lett. 80, 4012 (1998).Google Scholar