Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T16:20:41.859Z Has data issue: false hasContentIssue false

Strain Relief Mechanisms and Nature of Misfit Dislocations in GaAs/Si Heterostructures

Published online by Cambridge University Press:  22 February 2011

S. Sharan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, N. C. 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, N. C. 27695-7916
J. P. Salerno
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, N. C. 27695-7916
J. C. C. Fan
Affiliation:
Kopin Corp. Taunton, Mass 02780
Get access

Abstract

The nucleation and glide of misfit dislocations in GaAs/Si system is investigated using transmission electron microscopy. GaAs epilayers of different thicknesses were examined by electron microscopy (plan and cross-section) and the elastic strain remaining in the film has been related to the average spacing of the misfit dislocations at the interface. A model is developed based on minimum energy considerations to determine the strain-thickness relationship. The theoretical predictions of strain relaxation are compared with experimental observations using high resolution electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gale, R. P., Fan, J. C. C., Tsaur, B-Y., Turner, G. W. and Davis, F. M., IEEE Electron Dev. Lett., EDL–2 (7), 169 (1981).CrossRefGoogle Scholar
2. Tsaur, B-Y and Metze, G. M., Appl. Phys. Lett., 45 (5), 535 (1984).CrossRefGoogle Scholar
3. Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys., 23 (11), L843 (1984).CrossRefGoogle Scholar
4. Narayan, J., Sharan, S., Srivatsa, A. R. and Nandedkar, A. S., Mat. Sci. and Enggng., B1, 125 (1988).Google Scholar
5. Matthews, J. W. in Dislocation in Solids, Ed. Nabarro, F. R. N., North-Holland, Amstersam, (1979).Google Scholar
6. People, R. and Bean, J. C., Appl. Phys. Lett., 47, 322, (1985); R. People and J. C. Bean, Appl. Phys. Lett., 42, 229, (1986).CrossRefGoogle Scholar
7. Grabow, M. H. and Gilmer, G. H., Initial Stages of Epitaxial Growth, Eds. Hull, R., Gibson, J. M. and Smith, D. A., MRS Proc., 94, 15, (1987).CrossRefGoogle Scholar
8. Dodson, B. W. and Taylor, P. A., Appl. Phys. Lett., 49, 642, (1986).Google Scholar
9. Nandedkar, A. S. and Narayan, J., to be publishedGoogle Scholar
10. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Technol., A2, 436 (1984).Google Scholar
11. Maree, P. M. J., Barbour, J. C., Veen, J. F. van der, Kavanagh, K. L., Bulle-Lieuwma, C. W. T. and Viegers, M. P. A., J. Appl. Phys., 62, 4413 (1987).Google Scholar
12. Petruzello, J., Greenberg, B. L., Cammack, D. A. and Dalby, R., J. Appl. Phys., 63, 2299 (1988).CrossRefGoogle Scholar
13. Kvam, E. P., Eaglesham, D. J., Maher, D. M., Humphreys, C. J., Bean, J. C., Green, G. S. and Tanner, B. K., Proc. Mater. Res. Soc., 104, 623 (1987).CrossRefGoogle Scholar
14. Narayan, J., Larson, B. C. and Christie, W. H., Laser - Solid Interactions and Laser Processing, Eds. Ferris, S. D., Leamy, H. J. and Poate, J. M., MRS Boston, p. 440 (1978).Google Scholar
15. Lee, J. W., Salerno, J. P., Gale, R. P. and Fan, J. C. C., Proc. Mater. Res. Soc., 91, 33 (1987).Google Scholar
16. Hirth, J. P. and Lothe, J., Theory of Dislocations, (1972).Google Scholar
17. Kroner, E., Ergeb. agnew. Math., 5, 162 (1958).Google Scholar
18. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett., 51, 1325 (1987).Google Scholar
19. Yao, T., Okada, Y.. Kawanami, H., Matsui, S., Imagawa, A. and Ishida, K., Proc. Mater. Res. Soc., 91, 63 (1987).CrossRefGoogle Scholar