Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-26T15:26:11.727Z Has data issue: false hasContentIssue false

Strain Relaxation in Epitaxial Heterostructures: Sensitivity of High Resolution X-Ray Diffraction

Published online by Cambridge University Press:  25 February 2011

M. S. Goorsky
Affiliation:
Dept. of Materials Science and Engineering, UCLA, Los Angeles, CA
S. T. Horng
Affiliation:
Dept. of Materials Science and Engineering, UCLA, Los Angeles, CA
S. R. Sriffler
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY.
C. S. Stanis
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY.
Get access

Abstract

Comparison of high resolution x-ray diffraction and transmission electron microscopy measurements of Si-based heterostructures demonstrates that diffraction is much more sensitive to strain relaxation than previously reported. This study used as-grown and annealed Si1-x Gex structures grown on (001) Si by UHV/CVD. (004), (113), and (115) rocking curves were employed. Using the TEM measurements as a quantitative guide, relaxation was observed in rocking curves when the misfit dislocation line density was as low as 1 μ-1. Also, interference fringes strongly depend on the presence of interfacial defects. At higher dislocation densities, the diffraction peak from the epitaxial layer broadens considerably but does not shift to a position that represents complete relaxation. Broadening of the substrate diffraction peak also occurs, which is due to dislocations that loop into the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 ) Hu, S.M., J. Appl. Phys. 69, 7901 (1991).Google Scholar
2 ) Matthews, J.W. and Blakeslee, A.E., J. Crystal Growth 27, 118 (1974).Google Scholar
3 ) People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985); erratumGoogle Scholar
People, R. and Bean, J. C., Appl. Phys. Lett. 49, 229 (1986).Google Scholar
4 ) Gourley, P. L., Biefield, R.M., and Dawson, L.R., Appl. Phys. Lett. 47, 482 (1985).Google Scholar
5 ) Temkin, H., Gershoni, D. G., Chu, S. N. G., Vandenberg, J. M., Hamm, R. A., and Panish, M. B., Appl. Phys. Lett. 55, 1668 (1989).Google Scholar
6 ) Fritz, I. J., Gourley, P. L., and Dawson, L. R., Appl. Phys. Lett. 51, 1004 (1987).Google Scholar
7 ) Kamigaki, K., Sakashita, H., Kato, H., Nakamaya, M., Sano, N., and Terauchi, H., Appl. Phys. Lett. 49, 1071 (1987).CrossRefGoogle Scholar
8 ) Orders, P.J. and Usher, B.I., Appl. Phys. Lett. 50, 980 (1987).Google Scholar
9 ) Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Technol. A2, 436 (1984).Google Scholar
10 ) Anderson, N.G., Laidig, W.D., and Lin, Y.F., J. Electron. Mater. 14, 187 (1985).Google Scholar
11 ) Fritz, I.J., Appl. Phys. Lett. 51, 1080 (1987).CrossRefGoogle Scholar
12 ) Stiffler, S.R., Stanis, C.L., Goorsky, M.S., Chan, K.K., and deFresart, E., J. Appl. Phys. 71, 4820 (1992).Google Scholar
13 ) Iyer, S.S., unpublished.Google Scholar
14 ) Chem, C.H., Wang, K.L., Bai, G., and Nicolet, M.-A., in Silicon Molecular Beam Epitaxy, edited by Bean, J.C., Iyer, S.S., and Wang, K.L. (Mater, Res. Soc. Proc. 220, Pittsburgh, PA (1991) pp. 175180.Google Scholar
15 ) Bede Scientific, Ltd. Model 200 with Channel Cut Collimator.Google Scholar
16 ) Leiberich, A. and Levkoff, J., J. Vac. Sci. Technol. B8, 422 (1990).Google Scholar
17 ) Chen, Y.C., Bhattacharya, P.K., and Singh, J., J. Vac. Sci. Technol. B10, 769 (1992).Google Scholar
18 ) Zaumseil, P., Winter, U., Cembali, F., Servidori, M., and Sourek, Z., Phys. Stat. Sol. (a) 100, 95 (1987).Google Scholar