Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T18:37:22.653Z Has data issue: false hasContentIssue false

Strain Relaxation at Low Misfits: Dislocation Injection vs. Surface Roughening

Published online by Cambridge University Press:  21 February 2011

D.D. Perovic
Affiliation:
Department of Metallurgy and Materials Science, University of Toronto, Toronto M5S 1A4 Canada;, Email: perovic@ecf.utoronto.ca
B. Bahierathan
Affiliation:
Department of Metallurgy and Materials Science, University of Toronto, Toronto M5S 1A4 Canada;, Email: perovic@ecf.utoronto.ca
D.C. Houghton
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa K1A 0R6 Canada.
H. Lafontaine
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa K1A 0R6 Canada.
J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa K1A 0R6 Canada.
Get access

Abstract

Two competing strain relaxation mechanisms, namely misfit dislocation generation and surface roughening, have been extensively studied using the GexSi1-x/Si (x< 0.5) system as an example. A predictive model has been developed which accurately describes the nature of misfit dislocation nucleation and growth under non-equilibrium conditions. Using optical and electron microscopy, coupled with a refined theoretical description of dislocation nucleation, it is shown that strain relieving dislocations are readily generated at low misfits with a characteristic activation energy barrier regardless of the growth technique employed (i.e. MBE, RTCVD and UHVCVD). Secondly we have studied the alternative elastic strain relaxation mechanism involving surface undulation; x-ray diffraction, electron and atomic force microscopy have been used to characterize GexSi1-x/Si (x<0.5) structures grown by UHVCVD and MBE at relatively higher temperatures. A theoretical model has been used to model the critical thickness for surface wave generation. The conditions governing the interplay between dislocation formation and surface buckling are described in terms of a "morphological instability diagram".

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 van der Merwe, J.H., Crit. Rev. Sol. St. Mat. Sci., 17, 187 (1991).Google Scholar
2 For a recent review see: Perovic, D.D., Rep. Prog. Phys. (in preparation).Google Scholar
3 Perovic, D.D. and Houghton, D.C., Inst. Phys. Conf. Ser., 146, 117, (1995).Google Scholar
4 For example, see these proceedings: Mat. Res. Soc. Symp. Proc. Vol. 399 (1996).Google Scholar
5 Grinfeld, M.A. and Srolovitz, D.J., in: Properties of Strained and Relaxed Silicon Germanium. edited by Kasper, E., (Inspec, London, 1995), p.3.Google Scholar
6 Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett., 72, 3570 (1994).Google Scholar
7 Chen, K.M., Jesson, D.E., Pennycook, S.J., Thundat, T. and Warmack, R.J., Phys. Rev. Lett, (to appear).Google Scholar
8 Madhukar, A., J. Cryst. Growth, (in press).Google Scholar
9 Jesson, D.E., Pennycook, S.J., Baribeau, J.-M. and Houghton, D.C., Phys. Rev. Lett., 71, 1744 (1993); D.E. Jesson, K.M. Chen, S.J. Pennycook, T. Thundat and R.J. Warmack, Science, 268,1161 (1995).Google Scholar
10 Cullis, A.G., Pidduck, A.J. and Emeny, M.T., Phys. Rev. Lett., 75, 2368 (1995).Google Scholar
11 Houghton, D.C., Lockwood, D.J., Dharma-wardana, M.W.C., Fenton, E.W., Baribeau, J.-M. and Denhoff, M.W., J. Cryst. Growth., 81, 434 (1987).Google Scholar
12 Sturm, J.C., Schwartz, P.V., Prinz, E.J. and Manoharan, H., J. Vac. Sci. Technol., B, 10, 2011 (1992).Google Scholar
13 Meyerson, B., Proc. I.E.E.E., 80, 1592 (1992).Google Scholar
14 Lafontaine, H., Houghton, D.C., Elliot, D., Rowell, N.L., Baribeau, J.-M., Laframboise, S., Sproule, G.I. and Rolfe, S.J., J. Vac. Sci. Technol. B. (to appear).Google Scholar
15 Houghton, D.C., J. Appl. Phys., 70, 2136 (1991).Google Scholar
16 Alexander, H. and Haasen, P., Solid State Phys., 22, 27 (1968).Google Scholar
17 Zhao, A., B.A.Sc. Thesis, University of Toronto, (1993).Google Scholar
18 Perovic, D.D. and Houghton, D.C., Mat. Res. Soc. Symp. Proc, 263, 391 (1992); Phys. Stat. Sol. (a), 138, 425 (1993).Google Scholar
19 Noël, J.-P., Rowell, N.L., Houghton, D.C., Wang, A. and Perovic, D.D., Appl. Phys. Lett., 61, 690 (1992).Google Scholar
20 Rowell, N.L., Noël, J.-P., Houghton, D.C., Wang, A., Lenchyshyn, L.C., Thewalt, M.L.W. and Perovic, D.D., J. Appl. Phys., 74, 2790 (1992).Google Scholar
21 Chen, K.M., Jesson, D.E., Pennycook, S.J., Mostoller, M., Kaplan, T., Thundat, T. and Warmack, R.J., Phys. Rev. Lett., 75, 1582 (1995).Google Scholar
22 Gosling, T.J. and Willis, J.R., J. Mech. Phys. Sol., 42, 1199 (1994).Google Scholar
23 Vecheten, J.A. Van, Handbook on Semiconductors, Vol. 3, edited by Moss, T.S., (Amsterdam, North Holland, 1980), p. 1.Google Scholar
24 Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys., 61, 289 (1989).Google Scholar
25 Hirth, J.P. and Lothe, J., Theory of Dislocations. 2nd ed., Wiley, New York, 1982, p.757.Google Scholar
26 Pidduck, A.J., Robbins, D.J., Cullis, A.G., Leong, W.Y. and Pitt., A.M., Thin Solid Films, 222, 78 (1992).Google Scholar
27 Baribeau, J.-M., J. Cryst. Growth, (in press).Google Scholar
28 Spencer, B.J., Voorhees, P.W. and Davis, S.H., J. Appl. Phys., 73, 4955 (1993).Google Scholar
29 Lagally, M.G., Jap.J. Appl.Phys., 32, 1493 (1993).Google Scholar
30 Chen, K.M., Jesson, D.E., Pennycook, S.J., Thundat, T. and Warmack, R.J., (these proceedings).Google Scholar
31 Perovic, D.D., Weatherly, G.C., Noël, J.-P. and Houghton, D.C., J. Vac. Sci. Technol. B., 9, 2034 (1991)Google Scholar