Skip to main content Accessibility help

Stm Studies of GMR Spin Valves

  • R. D. K. Misra (a1), T. Ha (a1), Y. Kadmon (a1), C. J. Powell (a1), M. D. Stiles (a1), R. D. McMichael (a1) and W. F. Egelhoff (a1)...


We have investigated the surface roughness and the grain size in giant magnetoresistance (GMR) spin valve multilayers of the general type: FeMn/Ni80Fe20Co/Cu/Co/Ni80Fe20 on glass and aluminum oxide substrates by scanning tunneling microscopy (STM). The two substrates give very similar results. These polycrystalline GMR multilayers have a tendency to exhibit larger grain size and increased roughness with increasing thickness of the metal layers. Samples deposited at a low substrate temperature (150 K) exhibit smaller grains and less roughness. Valleys between the dome-shaped individual grainsare the dominant form of roughness. This roughness contributes to the ferromagnetic, magnetostatic coupling in these films, an effect termed “orange peel” coupling by Néel. We have calculated the strength of this coupling, based on our STM images, and obtain values generally within about 20% of the experimental values. It appears likely that the ferromagnetic coupling generally attributed to so-called “pinholes” in the Cu when the Cu film thickness is too small is actually “orange peel” coupling caused by these valleys.



Hide All
[1] Velu, E., Dupas, C., Renard, D., Renard, J. P., and Seiden, J., Phys. Rev. B37, 668 (1988).
[2] Binasch, G., Grunberg, P., Sauerenbach, F. S., and Zinn, W., Phys. Rev. B 39, 4828 (1989).
[3] Baibich, M. N., Broto, J. M., Fert, A., Dau, F. Nguyen van, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).
[4] Parkin, S. S. P., Li, Z. G., and Smith, D. J., Appl. Phys. Lett. 58, 2710 (1991); R. J. Highmore, W. C. Shih, R. E. Somekh, J. E. Evetts, J. Mag. Mag. Mat. 116, 249 (1992); A. R. Modak, D. J. Smith, and S. S. P. Parkin, Phys. Rev. B 50,4232 (1994); T. Shinjo, Surface Sci. Rep. 12, 49 (1991); R. F. C. Farrow, R. F. Marks, G R. Harp, D. Weller, T. A. Rabedeau, M. F. Toney, and S.S.P. Parkin, Mat. Sci. Eng. RI 1, 155 (1993).
[5] Almasi, G. S. and Ahn, K. Y., J. Appl. Phys. 41, 1258 (1970); A. Layadi and J. 0. Artman, J. Mag. Mag. Mat. 92, 143 (1990); A. Layadi, J. O. Artman, R. A. Hoffman, C. L. Jensen, D. A. Saunders, and B. O. Hall, J. Appl. Phys. 67, 4451 (1990); H. O. Grupta, H. Niedoba, L. J. Heyderman, I. Tomas, I. B. Puchalska, and C. Sella, J. Appl. Phys. 69, 4529 (1991); E. W. Hill, J. P. Li, and J. K. Birtwistle, J. Appl. Phys. 69, 4526 (1991); R. P. Erickson and J. R. Cullen, J. Appl. Phys. 73, 5981 (1993); M. R. Parker, S. Hossain, D. Seale, J. A. Barnard, M. Tan, and H.Fujiwara, IEEE Trans. Mag. 30, 358 (1994); D. Altbir, M. Kiwi, R. Ramirez, and I. K. Schuller, to be published.
[6] Néel, L., Comp. Rend. Acad. Sci. (France) 255, 1545 (1962) and 255, 1676 (1962); J.-C. Bruyére, O. Massenet, R. Montmory, and L. N6el, Comp. Rend. Acad. Sci. (France) 258, 841(1964) and 258, 1423 (1964).
[7] Speriosu, V. S., Dieny, B., Humbert, P., Gurney, B. A., and Lefakis, H., Phys. Rev. B 44 5358 (1991); B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B43, 1297 (1991); C. Meny, J. P. Jay, P. Panissod, P. Humbert, V.S. Speriosu, H. Lefakis, J. P. Nozieres, and B. A. Gurney, Mat. Res. Soc. Symp. Proc. 313, 289 (1993); and B. Dieny, J. Mag. Mag. Mat.136, 335 (1994).
[8] Egelhoff, W. F. Jr, Misra, R. D. K., , Ha, Kadmon, Y., Powell, C. J., Stiles, M. D., McMichael, R. D., Bennett, L. H., Lin, C.-L., Sivertsen, J. M., and Judy, J. H., to be published.
[9] Egelhoff, W. F. Jr, and Kadmon, Y., to be published.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed