Skip to main content Accessibility help

Stm Imaging of Adsorbed Trimethylgallium on GaAs(001)-(2×4)

  • A. R. Avery (a1), A. J. Mayne (a2), C. M. Goringe (a2), J. H. G. Owen (a2), C. W. Smith (a2), M. O. Schweitzer (a2), T. S. Jones (a1), G. A. D. Briggs (a2) and W. H. Weinberg (a3)...


Scanning tunnelling microscopy (STM) has been used to image the adsorption of trimethylgallium (TMGa) on GaAs(001)-(2×4) surfaces prepared in situ by molecular beam epitaxy (MBE). Filled states images of the clean surface are dominated by (2×4) unit cells containing only two As dimers. Upon exposure of this surface to TMGa at room temperature, bright oval-shaped features are observed which are centred on the arsenic dimers of the unit cell. These arise from tunnelling from Ga-C bonds of the adsorbed molecules. At low coverages, preferential adsorption on unit cells adjacent to occupied sites along the [110] direction is observed. A detailed statistical analysis of a large number of adsorption sites shows that there is an increased probability of about 24% for adsorption next to a (2×4) unit cell which is occupied relative to an unoccupied one.



Hide All
1. See for example, Proceedings of 3rd International Conference on CBE and Related Growth Techniques, J. Crystal Growth 120 (1992) and Proceedings of 6th International Conference on Metal Organic Vapour Phase Epitaxy, J. Crystal Growth 124 (1992).
2. Martin, T. and Whitehouse, C. R., J. Crystal Growth 120, 25 (1992).
3. Lane, P. A., Martin, T., Freer, R. W., Calcott, P. D. J., Whitehouse, C. R., Jones, A. C. and Rushworth, S., Appl. Phys. Lett. 61, 285 (1992).
4. Gibson, E. M., Foxon, C. T., Zhang, J. and Joyce, B. A., J. Crystal Growth 105, 81 (1990).
5. Nishizawa, J., Kurabayashi, T., Abe, H. and Nozoe, A., Surf. Sci. 185, 249 (1987); M. L.Yu, J. Appl. Phys. 73, 716 (1993).
6. Kaneko, T., Naji, O., Jones, T. S. and Joyce, B. A., J. Crystal Growth (in press).
7. Avouris, Ph. and Lyo, I. W., Appl. Surf. Sci. 60/61, 426 (1992).
8. Pashley, M. D., Haberern, K. W., Friday, W., Woodall, J. M. and Kirchner, P. D., Phys. Rev. Lett. 60, 2176 (1988).
9. Biegelsen, D. K., Bringans, R. D., Northrup, J. E. and Schwartz, L. E., Phys. Rev. B 41, 5701 (1990).
10. Bressler-Hill, V., Wassermeier, M., Pond, K., Maboudian, R., Briggs, G. A. D., Petroff, P. M. and Weinberg, W. H., J. Vac. Sci. Technol. B10, 1881 (1992).
11. Wassermeier, M., Bressler-Hill, V., Maboudian, R., Pond, K., Wang, X. S., Weinberg, W. H. and Petroff, P. M., Surf. Sci. 278, L147 (1992).
12. Briggs, G. A. D., Knall, J., Mayne, A. J., Jones, T. S., Weinberg, W. H. and Avery, A. R., Nanotechnology 3, 113 (1992).
13. Mayne, A. J., Avery, A. R., Knall, J., Jones, T. S., Briggs, G. A. D. and Weinberg, W. H., Surf. Sci. 284, 247 (1993).
14. Yu, M. L., Memmert, U. and Kuech, T. F., Appl. Phys. Lett. 55, 1011 (1989).
15. Narmann, A. and Yu, M. L., Surf. Sci. 269/270, 1041 (1992).
16. Memmert, U. and Yu, M. L., Appl. Phys. Lett. 56, 1883 (1990).
17. Souda, R. and Yu, M. L., Surf. Sci. 280, 115 (1993).
18. Smith, C. W. and Goringe, C. M., to be published.
19. Okuno, Y., Asahi, H., Kaneko, T., Kang, T. W. and Gonda, S., J. Crystal Growth 105, 185 (1990).
20. Shitara, T., Zhang, J., Neave, J. H. and Joyce, B. A., J. Appl. Phys. 71, 4299 (1992).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed