Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T09:47:10.779Z Has data issue: false hasContentIssue false

Stimulated Emission from Excitons in a Quantum Wire Laser Fabricated by Cleaved Edge Overgrowth

Published online by Cambridge University Press:  21 February 2011

Werner Wegscheider
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Loren Pfeiffer
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Marc Dignam
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Aron Pinczuk
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Kenneth West
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

Quantum wires which form at the T-shaped intersection of two 7 nm wide quantum wells have been embedded in the active region of AlGaAs/GaAs lasers. The quantum wires whose dimensions can be precisely controlled on a monolayer length scale have been prepared by cleaved edge overgrowth, a molecular beam growth technique which involves regrowth on the cleavage plane of a previously grown multilayer structure. The quantum wire emission wavelength is found to be nearly independent of the optical excitation level. This absence of band-gap renormalization effects at all pump intensities implies that the gain mechanism in our laser is excitonic, and further indicates a marked increase in the stability of the excitonic gas phase in one dimension. This is consistent with the observed increase in the exciton binding energy by more than 50% compared to the two-dimensional case.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Arakawa, Y. and Yariv, A., IEEE J. Quantum Electron. 22, 1887 (1986).Google Scholar
2 Asada, M., Miyamoto, Y., and Suematso, Y., IEEE J. Quantum Electron. 22, 1915 (1986).Google Scholar
3 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
4 Degani, M. H. and Hipolito, O., Phys. Rev. B 35, 9345 (1987).Google Scholar
5 Bányai, L., Galbraith, I., Ell, C., and Haug, H., Phys. Rev. B 36, 6099 (1987).Google Scholar
6 Ivanov, A. L. and Haug, H., Phys. Rev. Lett. 71, 3182 (1993).Google Scholar
7 Arakawa, Y. and Yariv, A., IEEE J. Quantum Electron. 22, 1887 (1986).Google Scholar
8 For reviews see, Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures (Academic, San Diego, 1991).Google Scholar
9 Kapon, E., Hwang, D. M., and Bhat, R., Phys. Rev. Lett. 63,430 (1989).Google Scholar
10 Tsuchiya, M., Gaines, J. M., Yan, R. H., Simes, R. J., Holtz, P. O., Coldren, L. A., and Petroff, P. M., Phys. Rev. Lett. 62, 466 (1989).Google Scholar
11 Nötzel, R., Ledentsov, N. N., Däweritz, L., Hohenstein, M., and Ploog, K., Phys. Rev. Lett. 67, 3812 (1991).Google Scholar
12 Tsukamoto, S., Nagamune, Y., Nishioka, M., and Arakawa, Y., Appl. Phys. Lett. 63, 355 (1993).Google Scholar
13 Brunner, K., Bockelmann, U., Abstreiter, G., Walther, M., Böhm, G., Tränkle, G., and Weimann, G., Phys. Rev. Lett. 69, 3216 (1992).Google Scholar
14 Prins, F. E., Lehr, G., Burkard, M., Schweizer, H., Pillkuhn, M. H., and Smith, G. W., Appl. Phys. Lett. 62, 1365 (1993).Google Scholar
15 Pfeiffer, L., West, K. W., Störmer, H. L., Eisenstein, J. P., Baldwin, K. W., Gershoni, D., and Spector, J., Appl. Phys. Lett. 56, 1697 (1990).Google Scholar
16 Goñi, A. R., Pfeiffer, L. N., West, K. W., Pinczuk, A., Baranger, H. U., and Stormer, H. L., Appl. Phys. Lett. 61, 1956 (1992).Google Scholar
17 Schmitt-Rink, S., Chemla, D. S., and Miller, D. A. B., Adv. in Physics 38, 89 (1989).Google Scholar
18 Ding, J., Jeon, H., Ishihara, T., Hagerott, M., and Nurmikko, A. V., Phys. Rev. Lett. 69, 1707 (1992).Google Scholar
19 Greene, R. L., Bajaj, K. K., and Phelps, D. E., Phys. Rev. B 29, 1807 (1984).Google Scholar
20 Andreani, L. C. and Pasquarello, A., Phys. Rev. B 42, 8928 (1990).Google Scholar