Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-02T09:33:21.087Z Has data issue: false hasContentIssue false

Sticking Probability and Step Coverage Studies of SiO2 and Polymerized Siloxane Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

Jeremy A. Theil*
Affiliation:
Central Research Laboratory, Johnson Controls, Inc., Milwaukee, WI, 53209
Get access

Abstract

This paper describes a method for estimating the effective sticking probability for plasma enhanced chemical vapor deposition (PECVD) of hexamethyldisiloxane (HMDSO) using SiO2 and polymerized siloxanes deposited on specially prepared trench structures. Comparison of the data with direct Monte-Carlo simulation curves provides information about the incorporation probability relative to film growth. It is shown that besides variation in gas chemistry, the choice of trench and film dimensions influences the step coverage. The sticking probability is shown to increase with oxygen flow rate by about 30%, from 0:1 to 10:1 02:HMDSO flow ratio. This flow rate dependence is found to be consistent with work performed on tetraethoxysilane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kawahara, T., Yuuki, A., and Matsui, Y., Jpn. J. Appl. Phys., 30(3), 431 (1991).Google Scholar
[2] Watanabe, K., and Komiyama, H., J. Electrochem. Soc., 137(4), 1222 (1990).Google Scholar
[3] Ikegawa, M., and Kobayashi, J., J. Electrochem. Soc., 136(10), 2982 (1989).Google Scholar
[4] Yuuki, A., Matsui, Y., and Tachibana, K., Jpn. J. Appl. Phys., 28(2), 212 (1989).Google Scholar
[5] Chang, C. Y., McVittie, J. P., and Saraswat, K. C., IEDM 93 Proceedings, 853 (1993).Google Scholar
[6] Blech, I. A., Thin Solid Films, 6, 113 (1970).Google Scholar
[7] Ross, R. C., and Vossen, J. L., Appl. Phys. Lett., 45(3), 239 (1984).Google Scholar
[8] Cheng, L.-Y., McVittie, J. P., and Saraswat, K. C., 2nd Int'l. Symp. on ULSI Science and Technology, 586 (1989).Google Scholar
[9] Kendall, D. L., Appl. Phys. Lett., 26(4), 195 (1975).Google Scholar
[10] Bean, K. E., IEEE Trans. on Electron Devices, ED-25(10), 1185 (1978).Google Scholar
[11] Price, J. B., 2nd Int'l. Symp. on Silicon Mater. Sci. and Technol., 120(3), 339 (1973).Google Scholar
[12] Theil, J. A., J. Vac. Sci. and Technol. A, submitted (1995).Google Scholar
[13] Tsai, C.C., Knights, J. C., Chang, G., and Wacker, B., J. Appl. Phys., 59(8), 2998 (1986).Google Scholar
[14] Theil, J. A., Brace, J. G., and Knoll, R. W., J. Vac. Sci. and Technol. A, 12(4), 1365 (1994).Google Scholar
[15] Raupp, G. B., Levedakis, D. A., and Cale, T. S., J. Vac. Sci. and Technol. A, 13(4), to be published (1995).Google Scholar