Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T15:49:28.035Z Has data issue: false hasContentIssue false

Step-Edge Barriers, Re-Entrant Oscillations, and Unstable Epitaxial Growth

Published online by Cambridge University Press:  03 September 2012

Dimitri D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BZ, United Kingdom
Pavel Šmilauer
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BZ, United Kingdom Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London, SW7 2BZ, United Kingdom
Get access

Abstract

The influence of step-edge barriers that inhibit the interlayer transport of atoms is discussed in the context of several material systems by using simulations of a solid-on-solid model. We show how the combined effect of this step-edge barrier and a non-thermal short-range incorporation process of freshly-deposited atoms can be used to explain several epitaxial phenomena on metal and semiconductor surfaces: (i) re-entrant oscillations seen with He-atom scattering and high-resolution low-energy electron diffraction during Pt(111) homoepitaxy, (ii) instabilities during growth on GaAs(001) and several metal (001) and (111) surfaces in the form of multilayer features that dynamically coarsen, while maintining their shape, and (iii) re-entrant oscillations during etching of GaAs(001). In (iii), the incorporation is replaced by a short-range search for the atom to be removed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Herring, C., J. Appl. Phys. 21, 301 (1950).Google Scholar
2. Mullins, W.W., J. Appl. Phys. 30, 77 (1959).Google Scholar
3. Kardar, M., Parisi, G., and Zhang, Y.-C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
4. Lai, Z.-W. and Sarma, S. Das, Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
5. Villain, J., J. Phys. 11, 19 (1991).Google Scholar
6. Vvedensky, D.D., Zangwill, A., Luse, C.N., and Wilby, M.R., Phys. Rev. E 48, 852 (1993).Google Scholar
7. Family, F., Physica A 168, 561 (1990).Google Scholar
8. Sarma, S. Das, J. Vac. Sci. Technol. B 10, 1695 (1992).Google Scholar
9. Krug, J. and Spohn, H., in Solids Far From Equilibrium, edited by Godréche, C. (Cambridge University Press, Cambridge, 1992), pp. 479582.Google Scholar
10. Yang, H.-N., Wang, G.-C., and Lu, T.-M., Diffraction from Rough Surfaces and Dynamic Growth Fronts (World Scientific, Singapore, 1993).Google Scholar
11. Tong, W.M. and Williams, R.S., Ann. Rev. Phys. Chem. 45, 401 (1994).Google Scholar
12. Bott, M., Michely, T., and Comsa, G., Surf. Sci. 272, 161 (1992).Google Scholar
13. Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
14. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J.L., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
15. Stroscio, J.A., Pierce, D.T., Stiles, M., and Zangwill, A. (unpublished).Google Scholar
16. Hunt, A.W., Orme, C., D. Williams, R.M., Orr, B.G., and Sander, L.M., Europhys. Lett. 27, 611 (1994).Google Scholar
17. Orme, C., Johnson, M.D., Sudijono, J.L., Leung, K.T., and Orr, B.G., Appl. Phys. Lett. 64, 860 (1994).Google Scholar
18. Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
19. Kunkel, R., Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
20. Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
21. Tokura, Y., Saito, H., and Fukui, T., J. Crystal Growth 94, 46 (1989).Google Scholar
22. Bales, G.S. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
23. Weeks, J.D. and Gilmer, G.H., Adv. Chem. Phys. 40, 157 (1979).Google Scholar
24. Madhukar, A. and Ghaisas, S.V., CRC Crit. Rev. Solid State Mater. Sci. 14, 1 (1988).Google Scholar
25. Vvedensky, D.D., Clarke, S., Hugill, K.J., Myers-Beaghton, A.K., and Wilby, M.R., in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G. (Plenum, New York, 1990), pp. 297311.Google Scholar
26. Sarma, S. Das, J. Vac. Sci. Technol. A 8, 2714 (1990).Google Scholar
27. Metiu, H., Lu, Y.-T., and Zhang, Z., Science 255, 1088 (1992).Google Scholar
28. Egelhoff, W.F. Jr., and Jacob, I., Phys. Rev. Lett. 62, 921 (1989).Google Scholar
29. Evans, J.W., Sanders, D.E., Thiel, P.A., and DePristo, A.E., Phys. Rev. B 41, 5410 (1990).Google Scholar
30. Evans, J.W., Phys. Rev. B 43, 3897 (1991).Google Scholar
31. Stoltze, P. and Norskov, J.K., Phys. Rev. B 48, 5607 (1993).Google Scholar
32. Šmilauer, P. and Vvedensky, D.D., Phys. Rev. B 48, 17603 (1993).Google Scholar
33. Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H., and Joyce, B.A., Phys. Rev. B 46, 6815 (1992).Google Scholar
34. Zandvliet, H.T.W., Elswijk, H.B., Dijkkamp, D., Loenen, E.J. van, and Dieleman, J., J. Appl. Phys. 70, 2614 (1991).Google Scholar
35. Shitara, T., Zhang, J., Neave, J.H., and Joyce, B.A., J. Appl. Phys. 71, 4299 (1992).Google Scholar
36. Bott, M., Michely, T., and Comsa, G., Surf. Sci. 272, 161 (1992).Google Scholar
37. Hwang, R.Q. and Behm, R.J., J. Vac. Sci. Technol. B 10, 256 (1992).Google Scholar
38. Poelsema, B., Kunkel, R., Nagel, N., Becker, A.F., Rosenfeld, G., Verheij, L.K., and Comsa, G., Appl. Phys. A 53, 369 (1991).Google Scholar
39. Smilauer, P., Wilby, M.R., and Vvedensky, D.D., Phys. Rev. B 47, 4119 (1993).Google Scholar
40. Rosenfeld, G., Becker, A.F., Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett. 69, 917 (1992).Google Scholar
41. Poelsema, B., Becker, A.F., Rosenfeld, G., Kunkel, R., Nagel, N., Verheij, L.K., and Comsa, G., Surf. Sci. 272, 269, (1992).Google Scholar
42. Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett. 53, 2500 (1984); B. Poelsema, R. Kunkel, L.K. Verheij, and G. Comsa, Phys. Rev. B 41, 11609 (1990).Google Scholar
43. Michely, T. and Comsa, G., Surf. Sci. 256, 217 (1991); T. Michely and G. Comsa, Phys. Rev. B 44, 8411 (1991).Google Scholar
44. Michely, T., Land, T., Littmark, U., and Comsa, G., Surf. Sci. 272, 204 (1992).Google Scholar
45. Bedrossian, P., Houston, J.E., Tsao, J.Y., Chason, E., and Picraux, S.T., Phys. Rev. Lett. 67, 124 (1991); P. Bedrossian and T. Klitsner, Phys. Rev. B 44, 13783 (1991); P. Bedrossian and T. Klitsner, Phys. Rev. Lett. 68, 646 (1992); P. Bedrossian, Surf. Sci. 301, 223 (1994).Google Scholar
46. Chason, E., Bedrossian, P., Houston, J.E., Tsao, J.Y., Dodson, B.W., and Picraux, S.T., Appl. Phys. Lett. 59, 3533 (1991).Google Scholar
47. Lmilauer, P., Wilby, M.R., and Vvedensky, D.D., Surf. Sci. Lett. 291, L733 (1993).Google Scholar
48. Šmilauer, P., Wilby, M.R., and Vvedensky, D.D., Phys. Rev. B 48, 4968 (1993).Google Scholar