Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-26T00:00:39.858Z Has data issue: false hasContentIssue false

Static Dipole Polarizabilities of C, N, O and F: The Importance of Spin Projection

Published online by Cambridge University Press:  16 February 2011

C. Sosa
Affiliation:
Materials and Chemical Sciences Center, Pacific Northwest Laboratory, Richland, WA 99352
K. F. Ferris
Affiliation:
Materials and Chemical Sciences Center, Pacific Northwest Laboratory, Richland, WA 99352
Get access

Abstract

The static dipole polarizability for the ground state of C(3Π ), N(4∑+), O(3Π ) and F(2∑+ ) have been calculated using ab initio molecular orbital techniques. The polarizabilities are obtained from unrestricted Hartree-Fock and Many-Body Perturbation Theory wave functions with and without spin projection, which are computed by finite-field differentiation. The effect of spin contamination is shown to be important on the calculation of static dipole polarizabilities for the ground state of C, N, O and F.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Buckingham, A. D., Adv. Chem. Phys. 12, 107(1967).Google Scholar
2 McLean, A. D. and Yoshimine, M., J. Chem. Phys. 47, 1927(1967).Google Scholar
3 Luftman, H. S. and White, J. M., Surf. Science 139, 369(1984).Google Scholar
4 Gaussian 86, Frisch, M. J., Binkley, J. S., Schlegel, H. B., Rhagavachari, K., Melius, C. F., Martin, R. L., Stewart, J. J. P., Bobrowitcz, F. W., Rohlfing, C. M., Kahn, L. R., DeFrees, D. J., Seeger, R., Whiteside, R. A., Fox, D. J., Fluder, E. M., and Pople, J. A., Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh PA, 1984.Google Scholar
5 a) Sosa, C. and Schlegel, H. B., Int. J. Quantum Chem. 29, 1001(1986); 30, 155(1986); b) H. B. Schlegel, J. Chem. Phys. 84, 4530(1986); c) H. B. Schlegel, J. Phys. Chem. 92, 3075(1988).Google Scholar
6 Cohen, H. D. and Roothan, C. C. J., J. Chem. Phys. 43, S34(1965).Google Scholar
7 Blombergen, N., Cheng, R. K., Jha, S. S. and Lee, C. H., Phys. Rev. 174, 813(1968).Google Scholar
8 Huzinaga, S., J. Chem. Phys. 42, 1293(1965).Google Scholar
9 a) Dunning, T. H., Jr. and P. J. Hay in Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977); b) T. H. Dunning, Jr., J. Chem. Phys. 53, 2823(1970).Google Scholar
10 a) Sadlej, B. O. Roos and A. J., Chem. Phys. 94, 43(1985); b) K. Wolinski, B. O. Roos and A. J. Sadlej Theoret. Chim. Acta 68, 431(1985).Google Scholar
11 Maroulis, G. and Thakkar, A. J., J. Chem. Phys. 90, 366(1988); J. Chem. Phys. 92, 812(1990).Google Scholar
12 Werner, H. J. and Meyer, W., Mol. Phys. 31, 855(1976).Google Scholar
13 Werner, H. J. and Meyer, W., Phys. Rev. A, 13, 13(1976); and references therein.Google Scholar
14 Reinsch, E. A. and Meyer, W., Phys. Rev. A, 14, 915(197); and references therein.Google Scholar