Skip to main content Accessibility help
×
Home

Stability of Amorphous Silicon Thin Film Transistors

  • R.B. Wehrspohn (a1), S.C. Deane (a1), I.D. French (a1), J. Hewett (a1) and M.J. Powell (a1)...

Abstract

Dangling bond defects are created during positive bias stress of amorphous silicon thin film transistors and there is an energy barrier between 0.9 and 1 eV for this process. We have studied how this energy barrier depends on the material parameters of the amorphous silicon, namely hydrogen content, hydrogen bonding, Urbach energy and intrinsic, deposition induced stress. We observe no dependence on the hydrogen content or hydrogen bonding type, but we do observe a clear dependence on the Urbach energy and the intrinsic stress. These measurements support a localized model for defect creation involving Si-Si bond breaking and the switching of a neighboring H atom to stabilize the broken bond. These results suggest that stable amorphous silicon TFTs can be obtained at low deposition temperatures by control of the deposition-induced, intrinsic stress.

Copyright

References

Hide All
[1] Powell, M.J., IEEE Trans Electron Dev. 36, 2753 (1989)
[2] Berkel, C. van and Powell, M.J., Appl. Phys. Lett. 51, 1094 (1987).
[3] Kleider, J.P. and Dayoub, F., Phys. Rev. B 58, 10401 (1998).
[4] Powell, M.J., Berkel, C. van, and Hughes, J.R., Appl. Phys. Lett. 54, 1323 (1989).
[5] French, I.D., Deane, S.C., Murley, D.T., Hewett, J., Gale, I.G. and Powell, M.J., MRS Symp. Proc. 467, 875 (1997)
[6] Kaneko, Y., Sasano, A. and Tsukada, T., J. Appl. Phys. 69, 7301 (1991).
[7] Perrin, J., in Plasma Deposition of Amorphous Silicon-Based Materials, ed. by Bruno, G., Capezuto, P. and Madan, A. (Academic press, NY, 1994).
[8] Jackson, W.B., Marshall, J.M., and Moyer, M.D., Phys. Rev. B 39, 1164 (1989).
[9] Jackson, W. B., Phys. Rev. B 41, 1059 (1990).
[10] Crandall, R. S., Phys. Rev. B 43, 4057 (1991).
[11] Deane, S.C., Wehrspohn, R.B. and Powell, M.J., Phys. Rev. B 58, 12625 (1998).
[12] Libsch, F.R. and Kanicki, J., Appl. Phys. Lett. 62, 1286 (1993).
[13] Fujimoto, Y., IBM J. Res. Develop. 36, 76 (1992).
[14] Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B 32, 23 (1985).
[15] Sherman, S., Wagner, S., and Gottscho, R.A., Appl. Phys. Lett. 69, 3242 (1996).
[16] Wehrspohn, R.B., Deane, S.C., French, I.D., Powell, M.J. and Brüggemann, R., to be published.
[17] Stutzmann, M., Appl. Phys. Lett. 47, 21 (1985).
[18] Ghaith, A., Phil. Mag. Lett. 55, 197 (1987) and references therein.
[19] Smith, D.L., Thin-Film Deposition, McGraw-Hill, New York, 1995, p.196.
[20] Bulkin, P., Betrand, N., and Drevillon, B., Thin Solid Films 296, 66 (1997).
[21] Oechsner, H., in Plasma Processing of Semiconductors, ed. by Williams, P.F. (Kluwer, Netherlands, 1997), p. 157
[22] Dutta, J., Kroll, U., Chabloz, P., Shah, A., Howling, A.A., Dorier, J.-L., and Hollenstein, Ch., J. Appl. Phys. 72, 3220 (1992).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed