Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T08:11:55.155Z Has data issue: false hasContentIssue false

Stability and Icosahedral Transformation of Supercooled Liquid in Metal-Metal type Bulk Glassy Alloys

Published online by Cambridge University Press:  01 February 2011

Akihisa Inoue
Affiliation:
Japan Science and Technology Agency, Sendai 980–8577, Japan
Wei Zhnag
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Dmitri V. Louzguine
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Junji Saida
Affiliation:
Center for Interdiciplinary Research, Tohoku University, Sendai 980–8578, Japan
Eiichiro Matsubara
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

The glassy structure and the primary precipitation phase from supercooled liquid were examined in metal-metal type Zr-, Hf- and Cu-based alloy systems by various advanced analytical techniques. The icosahedral phase precipitates as the primary phase from supercooled liquid for all the metal-metal type glassy alloys examined in the present study. The icosahedral phase has a rhombic triacontahedra type for the Zr-Al-Ni-Cu-NM (NM=Ag, Pd, Au, Pt), Zr-Cu-NM, Hf-Al-Ni-Cu-NM, Cu-Zr-Ti-Pd and Cu-Hf-Ti alloys. In addition, the short-range atomic configurations in their glassy alloys have the features of highly dense packed atomic configuration, new local atomic configurations and long-range homogeneity with attractive interaction. It is therefore concluded that the high glass-forming ability of the metal-metal type alloys is due to the self-formation of the unique glassy structure with the above-described three features which are consistent with the formation of short-range icosahedral atomic configuration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Ohtera, K., Kita, K. and Masumoto, T., Jpn. J. Appl. Phys. 27, L2248 (1988).Google Scholar
2. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM. 30, 965 (1989).Google Scholar
3. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM. 31, 425 (1990).Google Scholar
4. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
5. Inoue, A., Amiya, K., Yoshiyi, I., Nishiyama, N. and Msumoto, T., Mater. Trans. Res. Soc. Jpn. 16A, 131 (1993).Google Scholar
6. Inoue, A. and Gook, J. S., Mater. Trans., JIM. 36, 1180 (1995).Google Scholar
7. Inoue, A., Nishiyama, N. and Matsuda, T., Mater. Trans. JIM. 37, 181 (1996).Google Scholar
8. Itoi, T. and Inoue, A., Mater. Trans. JIM. 41, 1256 (1999).Google Scholar
9. Inoue, A., Zhang, W. and Zhang, T., Mater. Trans. 43, 1952 (2002).Google Scholar
10. Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K., Acta Mater. 49, 3645 (2001).Google Scholar
11. Inoue, A. and Zhang, W., Mater. Trans. 43, 2921(2002).Google Scholar
12. Inoue, A. and Zhang, W., J. Mater. Res. 18, 1435(2003).Google Scholar
13. Amiya, K. and Inoue, A., Mater. Trans. 43, 81 (2002).Google Scholar
14. Inoue, A., Nishiyama, N. and Kimura, H., Mater. Trans. JIM. 38, 179 (1997).Google Scholar
15. Inoue, A., Acta Mater. 48, 279 (2000).Google Scholar
16. Inoue, A. and Zhang, W., Mater. Trans. (2004) (in press).Google Scholar
17. Inoue, A., Mater. Trans. JIM 36, 866 (1995).Google Scholar
18. Inoue, A. and Takeuchi, A., Mater. Trans. 43, 1892 (2002).Google Scholar
19. Saida, J., Matsushita, N., and Inoue, A., Mater. Trans. 43, 1937 (2002).Google Scholar
20. Imafuku, M., Yaota, K., Sato, S., Zhang, W., and Inoue, A., Mater. Trans. JIM. 40, 1144 (1999).Google Scholar
21. Imafuku, M., Sato, S., Koshiba, H., Matsubara, E., and Inoue, A., Mater. Trans. JIM. 41, 1526 (2000).Google Scholar
22. Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W. and Sakurai, T., Mater. Trans. JIM. 40, 1181 (1999).Google Scholar
23. Saida, J., Matsushita, M. and Inoue, A., Intermetallics, 10, 1089 (2002).Google Scholar
24. Saida, J. and Inoue, A., Jpn. J. Appl. Phys. 40, L769 (2001).Google Scholar
25. Inoue, A. and Takeuchi, A., Mater. Sci. Eng. (2004) (in press).Google Scholar
26. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 3, edited by Villars, P. and Calvert, L.D., (ASM, OH 1991) pp. 3421.Google Scholar
27. Zhang, Z. and Kuo, K.H., Philos. Mag. B54, L83 (1986).Google Scholar
28. Saida, J., Matsushita, M. and Inoue, A., Appl. Phys. Lett. 79, 412 (2001).Google Scholar
29. Saida, J., Kasai, M., Matsubara, E. and Inoue, A., Ann. Chim. Sci. Mater. 27, 77 (2002).Google Scholar
30. Saida, J., Matsubara, E. and Inoue, A., Mater. Trans. 44, 1971 (2003).Google Scholar
31. Zhang, T., Kurosaka, K. and Inoue, A., Mater. Trans. 43, 1937 (2002).Google Scholar
32. Inoue, A., Zhang, T., Kurosaka, K. and Zhang, W., Mater. Trans. 43, 1937 (2002).Google Scholar
33. Saida, J., Osuna, T., Ohnuma, M., Matsubara, E. and Inoue, A., Sci. Tech. Adv. Mater. 4, 311 (2003).Google Scholar
34. Saida, J., Osuna, T., Inoue, A. and Ohnuma, M., J. Mater. Res. 18, 2013 (2003).Google Scholar
35. Louzguine, D. V. and Inoue, A., Scripta Materialia, 48, 1325 (2003).Google Scholar
36. Louzguine, D. V. and Inoue, A., Journal of Alloys and Compounds, 361, 153 (2003).Google Scholar
37. Louzguine, D. V. and Inoue, A., Appl. Phys. Lett. 78, 1841 (2001).Google Scholar
38. Louzguine, D. V. and Inoue, A., Annales de Chimie-Science des Matériaux, 27, 91 (2002).Google Scholar
39. Louzguine, D. V. and Inoue, A., Mater. Sci. Forum. (2004) (in press).Google Scholar