Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T00:52:11.229Z Has data issue: false hasContentIssue false

Stability and Band Offsets of SiC/GaN, SiC/AlN, and AlN/GaN Heterostructures

Published online by Cambridge University Press:  10 February 2011

J. A. Majewski
Affiliation:
Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
M. Städele
Affiliation:
Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
P. Vogl
Affiliation:
Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
Get access

Abstract

We present first-principles calculations of structural and electronic properties of heterova-lent SiC/GaN, SiC/AIN, and isovalent AIN/GaN heterostructures that are grown pseudo-morphically on (001) or (110) SiC substrates. For the polar interfaces, we have investigated reconstructed stoichiometric interfaces consisting of one and two mixed layers with lateral c(2 × 2), 2 × 1, 1 × 2, and 2 × 2 arrangements. The preferred bonding configurations of the reconstructed interfaces are found to be Si-N and Ga-C. With respect to vacuum, the valence band maximum is found to be highest in SiC and lowest in A1N. In these systems, the valence band offsets deviate substantially from the transitivity rule and depend sensitively on the microscopic details of the interface geometry. The SiC/AIN and AIN/GaN heterostructures are predicted to be of type I, whereas SiC/GaN heterostructure can be of type I or II.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paisley, J., Sitar, Z., Posthill, J.B., and Davis, R. F., J. Vac. Sci. Technol. A7, 701 (1989).Google Scholar
2. Liu, H., Frenkel, C., Kim, J. G. and Park, R. M., J. Appl. Phys. 74, 6124 (1993).Google Scholar
3. Barski, A., Rössner, U., Rouvière, J. L. and Arlery, M., MRS Internet. J. Nitride Semicond. Res. 1, 21 (1996).Google Scholar
4. Lambrecht, W. R. L., and Segall, B., Phys. Rev. B 43, 7070 (1991).Google Scholar
5. Albanesi, E. A., Lambrecht, W. R. L., and Segall, B., J. Vac. Sci.Technol. B 12, 2470 (1994).Google Scholar
6. Pickett, W. E., Computer Physics Reports 9, 115 (1989).Google Scholar
7. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991); L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
8. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
9. Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
10. Städele, M., Majewski, J. A., and Vogl, P., Acta Phys. Polon. A88, 917 (1995).Google Scholar
11. Martin, R. M., J. Vac. Sci. Technol. 17, 978 (1980).Google Scholar
12. Colombo, L., Resta, R., and Baroni, S., Phys. Rev. B 44, 5572 (1991).Google Scholar
13. Bratina, G., Vanzetti, L., Sorba, L., Biasiol, G., Franciosi, A., Peressi, M., and Baroni, S., Phys. Rev. B 50, 11723 (1994).Google Scholar
14. Martin, G., Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett. 68, 2541 (1996).Google Scholar
15. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., Morkoç, H., Lambrecht, W. R. L., and Segall, B., Appl. Phys. Lett. 65, 610 (1994).Google Scholar
16. Baur, J., Maier, K., Kunzer, M., Kaufman, U., and Schneider, J., Appl. Phys. Lett. 65, 2211 (1994).Google Scholar