Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-08T12:28:08.327Z Has data issue: false hasContentIssue false

Spontaneous Vesicles and other Solution Structures in Catanionic Mixtures

Published online by Cambridge University Press:  25 February 2011

Eric W. Kaler
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, DE 19716
Kathleen L. Herrington
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, DE 19716
Joseph A. N. Zasadzinski
Affiliation:
Department of Chemical and Nuclear Engineering and Materials Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
Get access

Abstract

We have prepared spontaneous, single-walled, equilibrium vesicles of controlled size and surface charge from aqueous mixtures of simple, commercially available, single-tailed cationic and anionic surfactants. We believe vesicle formation results from the production of anion-cation surfactant pairs which then act as double-tailed zwitterionic surfactants. Although unilamellar vesicles have been created by numerous physical and chemical techniques from multilamellar dispersions, all such vesicle systems revert to the equilibrium, multilamellar phase over time. These catanionic vesicles are stable for periods as long as several years and appear to be the equilibrium form of aggregation. Here we review the phase behavior and structural studies of several such mixtures, with particular focus on the effect of surfactant tail lengths on size and location of the vesicle phase in the appropriate phase diagram. The approach to equilibrium is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bangham, A.D., Standish, M.M., and Watkins, J.C., J. Mol. Biol. D, 238 (1965).Google Scholar
2. Fendler, J., Membrane Mimetic Chemistry (Wiley, New York, 1983).Google Scholar
3. Ostro, M. J., Ed., Liposomes: From Biophysics to Therapeutics (Marcel Dekker, New York, 1987).Google Scholar
4. Bhandarkar, S., Bose, A., J. Colloid Interface Sci. 135, 531 (1990).Google Scholar
5. Zasadzinski, J., Scriven, L.E., and Davis, H.T., Phil Mag. A 51, 287 (1985).Google Scholar
6. Both uni- and multilamellar lipid and surfactant aggregates are called liposomes. Within this classification are three acronyms - MLV for multilamellar vesicle, SUV for small unilamellar vesicle (<100 nm diameter) and LUV for large unilamellar vesicle (>100 nm). See: Papahadjopolous, D., Ann. NY Acad. Sci. 308, 367 (1978).100+nm).+See:+Papahadjopolous,+D.,+Ann.+NY+Acad.+Sci.+308,+367+(1978).>Google Scholar
7. Szoka, F. and Papahadjopolous, D., Ann. Rev. Biophys. Bioeng. 2, 467 (1980).Google Scholar
8. Virdon, J. (private communication).Google Scholar
9. Rydhag, L., Stenius, P., Odberg, L., J. Coll. Interface Sci. B, 275 (1982).Google Scholar
10. Hauser, H., Gains, N., Eibl, H., Müller, M., Wehrli, E., Biochemistry 25, 2126 (1986).Google Scholar
11. Gros, L., Ringsdorf, H., Schupp, H., Angew. Chem. Int. Ed. Engl. 20, 305 (1981).Google Scholar
12. Zasadzinski, J., Vosejpka, P., Miller, W.G., J. Coll. Interface Sci. 110, 347 (1986).CrossRefGoogle Scholar
13. Kaler, E.W., Herrington, K.L., Murthy, A.K., and Zasadzinski, J., J. Phys. Chem. (in press).Google Scholar
14. Kaler, E.W., Murthy, A. K., Rodriguez, B., Zasadzinski, J., Science 245, 1371 (1989).Google Scholar
15. Kaler, E.W., Herrington, K.L., Miller, D.D., and Zasadzinski, J., in Structure and Dynamics of Supramolecular Aggregates, edited by Chen, S.H., Huang, J.S., and Tartaglia, P. (Kluwer Academic Publishers, Dordrecht, 1992).Google Scholar
16. Murthy, A.K., Kaler, E. W., and Zasadzinski, J. A. N., J. Coll. Interface Sci. 145, 598 (1991).CrossRefGoogle Scholar
17. Gamboa, C. and Sepulveda, L., J. Coll. Interface Sci., 113, 566 (1986).Google Scholar
18. Shikata, T., Hirata, H., and Kotaka, T., Langmuir 3, 1081 (1987).Google Scholar
19. Weers, J., Kaler, E. W., and Herrington, K. L., manuscript in preparation.Google Scholar
20. Tanford, C., The Hydrophobic Effect (Wiley, New York, 1980).Google Scholar
21. Israelachvili, J., Mitchell, D. J. and Ninham, B. W., J.Chem. Soc. Faraday Trans. II, 22, 1525 (1976).Google Scholar
22. Israelachvili, J., Intermolecular and Surface Forces (Academic Press, New York, 1985).Google Scholar
23. Herrington, K. L. and Kaler, E. W., manuscript in preparation.Google Scholar
24. Safran, S. A., Pincus, P., and Andelman, D. Science 248, 354 (1990).Google Scholar
25. Safran, S. A., Pincus, P., Andelman, D., and MacKintosh, F.C., Phys. Rev. A 43, 1071 (1991).Google Scholar
26. Helfrich, W., Z. Naturforsch. 28c, 693 (1973).Google Scholar
27. Helfrich, W., Z. Naturforsch 33a, 305 (1978).Google Scholar
28. Cantu, L., Corti, M., Musolino, M., Salina, P., Europhys. Lett. 3, 561 (1990).Google Scholar