Skip to main content Accessibility help

Spontaneous Vesicles and other Solution Structures in Catanionic Mixtures

  • Eric W. Kaler (a1), Kathleen L. Herrington (a1) and Joseph A. N. Zasadzinski (a2)


We have prepared spontaneous, single-walled, equilibrium vesicles of controlled size and surface charge from aqueous mixtures of simple, commercially available, single-tailed cationic and anionic surfactants. We believe vesicle formation results from the production of anion-cation surfactant pairs which then act as double-tailed zwitterionic surfactants. Although unilamellar vesicles have been created by numerous physical and chemical techniques from multilamellar dispersions, all such vesicle systems revert to the equilibrium, multilamellar phase over time. These catanionic vesicles are stable for periods as long as several years and appear to be the equilibrium form of aggregation. Here we review the phase behavior and structural studies of several such mixtures, with particular focus on the effect of surfactant tail lengths on size and location of the vesicle phase in the appropriate phase diagram. The approach to equilibrium is also discussed.



Hide All
1. Bangham, A.D., Standish, M.M., and Watkins, J.C., J. Mol. Biol. D, 238 (1965).
2. Fendler, J., Membrane Mimetic Chemistry (Wiley, New York, 1983).
3. Ostro, M. J., Ed., Liposomes: From Biophysics to Therapeutics (Marcel Dekker, New York, 1987).
4. Bhandarkar, S., Bose, A., J. Colloid Interface Sci. 135, 531 (1990).
5. Zasadzinski, J., Scriven, L.E., and Davis, H.T., Phil Mag. A 51, 287 (1985).
6. Both uni- and multilamellar lipid and surfactant aggregates are called liposomes. Within this classification are three acronyms - MLV for multilamellar vesicle, SUV for small unilamellar vesicle (<100 nm diameter) and LUV for large unilamellar vesicle (>100 nm). See: Papahadjopolous, D., Ann. NY Acad. Sci. 308, 367 (1978).
7. Szoka, F. and Papahadjopolous, D., Ann. Rev. Biophys. Bioeng. 2, 467 (1980).
8. Virdon, J. (private communication).
9. Rydhag, L., Stenius, P., Odberg, L., J. Coll. Interface Sci. B, 275 (1982).
10. Hauser, H., Gains, N., Eibl, H., Müller, M., Wehrli, E., Biochemistry 25, 2126 (1986).
11. Gros, L., Ringsdorf, H., Schupp, H., Angew. Chem. Int. Ed. Engl. 20, 305 (1981).
12. Zasadzinski, J., Vosejpka, P., Miller, W.G., J. Coll. Interface Sci. 110, 347 (1986).
13. Kaler, E.W., Herrington, K.L., Murthy, A.K., and Zasadzinski, J., J. Phys. Chem. (in press).
14. Kaler, E.W., Murthy, A. K., Rodriguez, B., Zasadzinski, J., Science 245, 1371 (1989).
15. Kaler, E.W., Herrington, K.L., Miller, D.D., and Zasadzinski, J., in Structure and Dynamics of Supramolecular Aggregates, edited by Chen, S.H., Huang, J.S., and Tartaglia, P. (Kluwer Academic Publishers, Dordrecht, 1992).
16. Murthy, A.K., Kaler, E. W., and Zasadzinski, J. A. N., J. Coll. Interface Sci. 145, 598 (1991).
17. Gamboa, C. and Sepulveda, L., J. Coll. Interface Sci., 113, 566 (1986).
18. Shikata, T., Hirata, H., and Kotaka, T., Langmuir 3, 1081 (1987).
19. Weers, J., Kaler, E. W., and Herrington, K. L., manuscript in preparation.
20. Tanford, C., The Hydrophobic Effect (Wiley, New York, 1980).
21. Israelachvili, J., Mitchell, D. J. and Ninham, B. W., J.Chem. Soc. Faraday Trans. II, 22, 1525 (1976).
22. Israelachvili, J., Intermolecular and Surface Forces (Academic Press, New York, 1985).
23. Herrington, K. L. and Kaler, E. W., manuscript in preparation.
24. Safran, S. A., Pincus, P., and Andelman, D. Science 248, 354 (1990).
25. Safran, S. A., Pincus, P., Andelman, D., and MacKintosh, F.C., Phys. Rev. A 43, 1071 (1991).
26. Helfrich, W., Z. Naturforsch. 28c, 693 (1973).
27. Helfrich, W., Z. Naturforsch 33a, 305 (1978).
28. Cantu, L., Corti, M., Musolino, M., Salina, P., Europhys. Lett. 3, 561 (1990).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed