Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T14:26:09.205Z Has data issue: false hasContentIssue false

Spin-Dependent Transport in GaN Light Emitting Diodes

Published online by Cambridge University Press:  21 February 2011

M. S. Brandt
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D85748 Garching, Germany, mbrandt@physik.tu-muenchen.de
N. M. Reinacher
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D85748 Garching, Germany, mbrandt@physik.tu-muenchen.de
O. Ambacher
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D85748 Garching, Germany, mbrandt@physik.tu-muenchen.de
M. Stutzmann
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D85748 Garching, Germany, mbrandt@physik.tu-muenchen.de
Get access

Abstract

Electrically detected magnetic resonance (EDMR) is used to study recombination processes in two types of gallium nitride light emitting diodes: in m/i/n/n+- and InGaN/AlGaN double-heterostructure devices. In the MIS-diodes, two resonances at g=1.96 and 2.00, corresponding to the effective mass donor and a deep defect are observed at room temperature. At low temperatures, an acceptor-related resonance at g=2.06 is visible as well. After current degradation, the spectra are dominated by the defect resonance, indicating that the creation of this defect is responsible for the decreased electroluminescence efficiency. In the double-heterostrucrure devices, EDMR can only be observed below 60 K showing the g=2.00 defect resonance. The same defect resonance is also observed in conventional electron spin resonance experiments under illumination (light-induced ESR).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Götz, W., Johnson, N. M., Street, R. A., Amano, H., Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995)Google Scholar
2 Fanciulli, M., Lei, T., Moustakas, T. D., Phys. Rev. B. 48, 15144 (1993)Google Scholar
3 Carlos, W. E., Freitas, J. A., Asif Khan, M., Olson, D. T., Kuznia, J. N., Phys. Rev. B. 48,17878 (1993)Google Scholar
4 Kunzer, M., Kaufmann, U., Maier, K., Schneider, J., Herres, N., Akasaki, I., Amano, H., Mat. Sci. Forum 143–147,87 (1994)Google Scholar
5 Glaser, W. R., Kennedy, T. A., Doverspike, K., Rowland, L. B., Gaskill, D. K., Freitas, J. A., Asif Kahn, M., Olson, D. T., Kuznia, J. N., Wickenden, D. K., Phys. Rev. B 51, 13326 (1995)Google Scholar
6 Solomon, I., Solid State Commun. 20, 215 (1976)Google Scholar
7 see e.g. Lips, K., Funs, W., J. Appl. Phys. 74, 3993 (1993)Google Scholar
8 Reinacher, N. M., Brandt, M. S., Stutzmann, M., Meyer, B. K., Verhandlungen der Deutschen Physikalischen Gesellschaft (VI) 30, 1282 (1995)Google Scholar
9 Brandt, M. S., International Workshop on Wide-Bandgap Nitrides, St. Louis, USA (1994)Google Scholar
10 Koide, N., Kato, H., Sassa, M., Yamasaki, S., Manabe, K., Hashimoto, M., Amano, H., Hiramatsu, K., Akasaki, I., J. Crystal Growth 115, 639 (1991)Google Scholar
11 Kaufmann, U., these proceedingsGoogle Scholar
12 Yanagisawa, T., Electronics Letters 22, 846 (1986)Google Scholar
13 Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994)Google Scholar
14 Carlos, W. E., Glaser, E. R., Kennedy, T. A., Nakamura, S., Appl. Phys. Lett. 67, 2376 (1995)Google Scholar
15 Graeff, C. F. O., Stutzmann, M., Brandt, M. S., Phys. Rev. B 49, 11028 (1994)Google Scholar
16 Kaplan, D., Solomon, I., Mott, N. F., J. Phys. (Paris) 39, L51 (1978)Google Scholar
17 Lepine, D. J., Phys. Rev. B 6, 436 (1972)Google Scholar
18 Toyotomi, S., Morigaki, K., J. Phys. Soc. Jpn 29, 800 (1970)Google Scholar