Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T03:14:28.763Z Has data issue: false hasContentIssue false

Spectroscopy of Semiconductor Nano-Crystals at High Pressure

Published online by Cambridge University Press:  15 February 2011

John Schroeder
Affiliation:
Department of Physics and Center for Glass Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, U.S.A.
Markus R. Silvestri
Affiliation:
Department of Physics and Center for Glass Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, U.S.A.
Xue-Shu Zhao
Affiliation:
Department of Physics and Center for Glass Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, U.S.A.
Peter D. Persans
Affiliation:
Department of Physics and Center for Glass Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, U.S.A.
Lih-Wen Hwang
Affiliation:
Department of Physics and Center for Glass Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, U.S.A.
Get access

Abstract

The optical and vibrational properties of small CdSe and CdS particles embedded in a glass matrix and as a colloid have been studied as a function of pressure up to 90 kbar using Raman scattering and photoluminescence techniques. We will discuss the use of high pressure optical spectroscopy techniques, where the sample is contained in a diamond anvil.cell with optical access, to study the nature of the electronic states in semiconductor nanocrystals. Raman scattering is employed to establish the enhanced pressure stability of the wurtzite phase in the II-VI nanocrystalline composites. Photolurninescence is used to study the energies of electronic states. The wurtzite to rocksalt phase transition behavior in the nanocrystallite systems is quite different from that in the bulk material. This different behavior is attributed to a large number of defects (vacancies) in the nanocrystallite system. This work demonstrates that the main defects in the CdS glass composites are cadmium vacancies; while in CdSe Selenium vacancies exist in the conduction band. The pressure dependence of the Huang-Rhys parameter, characteristic for the strength of the electron-phonon coupling, will also be discussed for the nanocrystalline samples versus the bulk material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grusche, E., Naturwissenschaften 45, 486 (1958).Google Scholar
2. Edwards, A.L. and Drickamer, H.G., Phys. Rev. 122, 1149 (1961).Google Scholar
3. Owen, N.B. et al. J. Phys. Chem. Solids 24, 1519 (1963).Google Scholar
4. Venkateswaram, U., Chandasekhar, M., and Chandraskhar, H.R., Phys. Rev. B30, 3316 (1984).Google Scholar
5. Zhao, X.S., Schroeder, J., Bilodeau, T.G. and Hwa, L.G., Phys. Rev. B40, 1257 (1989).CrossRefGoogle Scholar
6. Efros, A.L. and Efros, , Fiz. Tekh. Poluprovodn. 16, 1209 (1982) Soviet Phys. Semiconductors 16, 772 (1982).Google Scholar
7. Rossetti, R., Ellison, J.L., Gibson, J.M., and Brus, L.E., J. Chem. Phys. 80, 4464 (1984).CrossRefGoogle Scholar
8. Brus, L.E., J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
9. Rossetti, R., Nakahara, S. and Brus, L.E., J. Chem. Phys. 79, 1086 (1983).Google Scholar
10. Zhao, X.S., Schroeder, J., Persans, P.D. and Bilodeau, T.G. Phys. Rev. B43, 12580 (1991).CrossRefGoogle Scholar
11. Zhao, X.S., et al., Chinese Physics Letters 1, 20 (1984).Google Scholar
12. Wolford, D.J. and Bailey, J.A., Solid State Commun. 53, 1069 (1985).Google Scholar
13. Brafman, O. and Mitra, S.S., in “Proceedings of the 2nd International Conference on Light Scattering in Solids” Ed. by Balkanski, M., Flammarion Sciences, Paris (1971), pg. 284.Google Scholar
14. Briggs, R.J. and Ramdas, A.K., Phys. Rev. B13, 5518 (1976).Google Scholar
15. Damen, T.C. and Jagdeep, Shah, Phys. Rev. Lett. 27, 1506 (1971).Google Scholar
16. Liu, S.W.W. and Rabii, S., Phys. Rev. B13, 1675 (1976).Google Scholar
17. Merlin, R., et al., Phys. Rev. B17, 4951 (1978).Google Scholar
18. Ekimov, A.I. and Efros, A.L.L., Phys. Status Solidi B150, 627 (1988).Google Scholar
19a. Potter, B.G. Jr.,, and Simmons, J.H., Phys. Rev. B37, 10838 (1988).Google Scholar
19b. Gross, E.F., Permogorov, S.A. and Razbirin, B.S. Soviet Physics – Solid State 8(5), 1180 (1966).Google Scholar
20. ersans, P.D., Tu, A., Wu, Y.–J. and Lewis, M., J. Opt. Soc. Am. B6, 818 (1989).CrossRefGoogle Scholar
21. Mei, J. R. and Lemos, V., Solid State Comm. 52, 785 (1984).Google Scholar
22. Ramsden, J.J. and Gratzel, M., J. Chem. Soc. Faraday Trans. 80, 919 (1984).Google Scholar
23. Variano, B.F., Schlotter, N.E., Hwang, D.M. and Sandroff, C.J., J. Chem. Phys. 88, 2848 (1988).Google Scholar
24. Venkateswaran, V., Chandrasekhar, M., and Chandrasekhar, H.R., Phys. Rev. B30, 3316 (1984).Google Scholar
25. Jaros, M., Deep levels in semiconductors, Adam. Hilger, Bristol, p. 146 (1982).Google Scholar
26. Bergstresser, T.K. and Cohen, M.L., Phys. Rev. Lett. 164, 1069 (1987).Google Scholar
27. Borrelli, N.F., Hall, C.W., Holland, H.J. and Smith, D.W., J. Appl. Phys. 61, 5399 (1987).CrossRefGoogle Scholar
28. Kobayashi, A., Sankey, F., and Dow, J.W., Phys. Rev. B28, 946 (1983).CrossRefGoogle Scholar
29. Hjalmarson, H.P., PhD thesis “Studies in the Theory of Solids” Chap. 2: Theory of Deep Traps., University of Illinois at Champaign Urbana, (1979).Google Scholar
30. Ren, X.Y. and Dow, J.D. and Wolford, D.J., Phys. Rev. B 25 7661 (1982).Google Scholar
31. Vogl, P., Wolford, D.J. and Dow, J.O., Phys. Rev. Lett. 44, 810 (1980).Google Scholar
32. Garvie, R.C., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
33. Zhao, X.S., Schroeder, J., Silvestri, M.R., Bilodeau, T.G. and Persans, P.D., MRS-Symp. Proc. 206, 151 (1991).Google Scholar
34. Klein, M., Hache, F., Richard, D., Flytzanis, C., Phys. Rev. B42, 11123 (1990).Google Scholar
35. Chestnoy, N., Harrier, T., Hull, R., Brus, L., J. Chem. Phys. 90, 3393 (1986).Google Scholar
36. Alivisatos, A., Harris, A., Levis, N., Steigerwald, M. and Brus, L., J. Chem. Phys. 89, 4001 (1988).Google Scholar