Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:24:33.025Z Has data issue: false hasContentIssue false

Spectroscopic Studies in InGaN Quantum Wells

Published online by Cambridge University Press:  10 February 2011

S. E Chichibu
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, chichibu@ims.tsukuba.ac.jp EECE Department, Waseda University, 34-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
T. Sota
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, chichibu@ims.tsukuba.ac.jp EECE Department, Waseda University, 34-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
K. Wada
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, chichibu@ims.tsukuba.ac.jp Department of Research and Development, Nichia Chemical Industries Ltd., 491 Oka, Kaminaka, Anan, Tokushima 774-8601, Japan
S. P DenBaars
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, chichibu@ims.tsukuba.ac.jp Materials and ECE Departments, University of California, Santa Barbara, CA 93106
S. Nakamura
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, chichibu@ims.tsukuba.ac.jp Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
Get access

Abstract

Fundamental electronic modulations in strained wurtzite If-nitride, in particular InxGa1-xN, quantum wells (QWs) were treated to explore the reason why practical InGaN devices emit bright luminescences in spite of the large threading dislocation (TD) density. The emission mechanisms were shown to vary depending on the well thickness L and InN molar fraction x. The electric field across the QW plane, F, which is a sum of the fields due to spontaneous and piezoelectric polarization and the pn junction field, causes the redshift of the ground state resonance energy through the quantum confined Stark effect (QCSE). The absorption spectrum is modulated by QCSE, quantum-confined Franz-Keldysh effect (QCFK), and Franz-Keldysh (FK) effect from the barrires when, for the first approximation, potential drop across the well (F/L) exceeds the valence band discontinuity, δEv. Under large F/L, holes are confined in the triangular potential well formed at one side of the well. This produces apparent Stokes-like shift in addition to the in-plane net Stokes shift on the absorption spectrum. The QCFK and FK further modulate the electronic structure of the wells with L greater than the three dimensional (3D) free exciton (FE) Bohr radius, aB. When F/L exceeds ΔEc, both electron (e) and hole (h) confined levels drop into the triangular potential wells at opposite sides of the wells, which reduces the wavefunction overlap. Doping of Si in the barriers partially screens the F resulting in a smaller Stokes-like shift, shorter recombination decay time, and higher emission efficiency. Finally, the use of InGaN was found to overcome the field-induced oscillator strength lowering due to the spontaneous and piezoelectric polarization. Effective in-plane localization of the QW excitons (confined excitons, or quantized excitons) in quantum disk (Q-disk) size potential minima, which are produced by nonrandom alloy potential fluctuation enhanced by the large bowing parameter and F, produces confined e-h pairs whose wavefunctions are still overlapped when L<aB. Their Coulomb interaction is more pronounced for F L<ΔEv.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2for a review, Akasaki, I., and Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).Google Scholar
3 Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).Google Scholar
4 Itaya, K., Onomura, M., Nishio, J., Sugiura, L., Saito, S., Suzuki, M., Rennie, J., Nunoue, S., Yamamoto, M., Fujimoto, H., Kokubun, Y, Ohba, Y, Hatakoshi, G., and Ishikawa, M., Jpn. J. Appl. Phys. 35, L1315 (1996).Google Scholar
5 Bulman, G., Doverspike, K., Sheppard, S., Weeks, T., Kong, H., Dieringer, H., Edmond, J., Brown, J., Swindell, J., and Schetzina, J., Electron. Lett. 33, 1556 (1997).Google Scholar
6 Kuramata, A., Domen, K, Soejima, R., Horino, K., Kubota, S., and Tanahashi, T., Jpn. J. Appl. Phys. 36, LI130 (1997).Google Scholar
7 Mack, M., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U., Coldren, L., and DenBaars, S., MRS Internet J. Nitride Semicond. Res. 2, 41 (1997); J. Cryst. Growth 180/190, 837 (1998).Google Scholar
8 Nakamura, E, Kobayashi, T., Asatsuma, T., Funato, K., Yanashima, K., Hashimoto, S., Naganuma, K., Tomioka, S., Miyajiina, T., Morita, E., Kawai, H., and Ikeda, M., J. Cryst. Growth 180/190, 841 (1998).Google Scholar
9 Kneissl, M., Bour, D. P., Johnson, N. M., Romano, L. T., Krusor, B. S., Donaldson, R., Walker, J., and Dunnrowicz, C., Appl. Phys. Lett. 72, 1539 (1998).Google Scholar
10 , Yamada, Kaneko, Y., Watanabe, S., Yamaoka, Y, Hidaka, T., Nakagawa, S., Marenger, E., Takeuchi, T., Yamaguchi, S., Amano, H., and Akasaki, I., Proc. 10th IEEE Lasers and Electro-Optics Society Annual Meeting, San Francisco, USA, Nov. 10-13, 1997, PD1.2.Google Scholar
11application of LEO technique is introduced in several publications. For example, Bauser, E., Thin film growth techniques for low dimensional structures, eds. Farrow, R., Parkin, S., Dobson, P, Neave, J. and Arrott, A. (Plenum, New York, 1987), p. 171.Google Scholar
12 Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A., Jpn. J. Appl. Phys. 36, L899 (1997); A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259 (1997).Google Scholar
13 Zheleva, T., Nam, O-H., Bremser, M., and Davis, R., Appl. Phys. Lett. 71, 2472 (1997); O-H. Nam, M. Bremser, T. Zheleva, and R. Davis, Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
14 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T, Kiyoku, H., Sugimoto, Y, Kozaki, T., Umemoto, H., Sano, M., and Chocho, K, Jpn. J. Appl. Phys. 36, L1568 (1997); Appl. Phys. Lett. 72,211(1998).Google Scholar
15 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 37, L309 (1998).Google Scholar
16 Marchand, H., lbbetson, J., Flni, P., Kozodoy, P., Keller, S., DenBaars, S., Speck, J., and Mishra, U., MRS Internet J. Nitride Semicond. Res. 3, 3 (1998); H. Marchand, X. H. Wu, J. Ibbetson, P Fini, P. Kozodoy, S. Keller, J. Speck, S. DenBaars, and U. Mishra, Appl. Phys. Lett. 73, 747 (1998).Google Scholar
17 Mukai, T., Morita, D., and Nakamura, S., J. Cryst. Growth 189/190,778 (1998).Google Scholar
18 Mukai, T., Narimatsu, H., and Nakamura, S., Jpn. J. Appl Phys. 37, L479 (1998).Google Scholar
19 Ponce, E and Bour, D., Nature 386, 351 (1997).Google Scholar
20 Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).Google Scholar
21 Bemardini, E, Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
22polarity problem has been reviewed in Hellman, E., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar
23 Koukitsu, A., Takahashi, N., Taki, T., and Seki, H., Jpn. J. Appl Phys. 35, L673 (1996); I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
24 , Osamura, Naka, S., and Murakami, Y, J. Appl. Phys. 46, 3432 (1975); R. Singh, D. Doppalapudi, T D. Moustakas, and L. Romano, Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
25properties of localized excitons in InGaN QWs are summarized in previous papers [Chichibu, S., Sota, T, Wada, K, and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998) and S. Chichibu, A. Abare, M. Mack, M. Minsky, T. Deguchi, D. Cohen, P Kozodoy, S. Fleischer, S. Keller, J. Speck, J. Bowers, E. Hu, U. Mishra, L. Coldren, S. DenBaars, K. Wada, T. Sota, and S. Nakamura, European Mater. Res. Soc. 98 Spring Meeting, Session L-IV.I, Strasbourg, France, June 16-19 (1998); Mater. Sci. Eng. B (1998; unpublished)]; original papers are S. Chichibu, T Azuhata, T. Sota, and S. Nakamura, Appli Phys. Lett. 69, 4188 (1996); 70, 2822 (1997); 73, 2006 (1998).Google Scholar
26 Jeon, E., Kozlov, V., Song, Y, Vertikov, A., Kuball, M., Nurmikko, A., Liu, H., Chen, C., Kern, R., Kuo, C., and Crawford, M., AppL Phys. Lett. 69, 4194 (1996); A. Vertikov, A. Nurmikko, K. Doverspike, G. Bulman, and J. Edmond, ibid 73, 493 (1998).Google Scholar
27 Narukawa, Y, Kawakami, Y, Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997); Y Narukawa, Y Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).Google Scholar
28 Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W, Wood, T. H., and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).Google Scholar
29 Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997); T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997); C. Wetzel, H. Amano, I. Akasaki, T. Suski, J. Ager, E. Weber, E. Haller, and B. K. Meyer, Mater. Res. Soc. Syrup. Proc. 482, 489 (1998).Google Scholar
30 Bergman, J., Saksulv, N., Dalfors, J., Holtz, P., Monemar, B., Amano, H., and Akasaki, I., Mater. Res. Soc. Symp. Proc. 482, 631 (1998).Google Scholar
31 Im, J., Kolhner, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
32 Deguchi, T., Azuhata, T., Sota, T., Chichibu, S., and Nakamura, S., Mater. Sci. Eng. B 50, 251 (1997); T. Deguchi, A. Shikanai, K. Torii, T. Sota, S. Chichibu, and S. Nakamura, Appl. Phys. Lett. 72, 3329 (1998).Google Scholar
33 Mohs, G., Aoki, T., Nagai, M., Shimano, R., K-Gonokami, M., and Nakamura, S., Solid State Commun. 104, 643 (1997).Google Scholar
34 Chichibu, S., Cohen, D., Mack, M., Abare, A., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J., Mishra, U., Coldren, L., Clarke, D., and DenBaars, S., Appl Phys. Lett. 73, 496 (1998).Google Scholar
35 Haug, H. and Koch, S., Quantum Theory of the Optical and Electronic Properties of Semiconductors, (World Scientific, Singapore, 1990); W Chow, S. W Koch, and M. Sargent I, Semiconductor-Laver Physics, (Springer, Berlin, 1994); W. Chow, A. Wright, and J. Nelson, Appl. Phys. Lett. 68, 296 (1996).Google Scholar
36 Frankowsky, G., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996).Google Scholar
37 Wiesmann, D., Brener, I., Pfeiffer, L., Kahn, M., and Sun, C., Appl. Phys. Lett. 69, 3384 (1996).Google Scholar
38 Kuball, M., Jeon, E., Song, Y., Nunnikko, A., Kozodoy, P., Abare, A., Keller, S., Coldren, L., Mishra, U., DenBaars, S., and Steigerwald, D., Appl. Phys. Lett. 70, 2580 (1997).Google Scholar
39 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., J. Appl. Phys. 79, 2784 (1996); Proc. Int. Symp. On Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), pp. 202; S. Chichibu, H. Okumura, S. Nakamura, G. Feuillet, T. Azuhata, T. Sota, and S. Yoshida, Jpn. J. Appl. Phys. 36, 1976 (1997).Google Scholar
40 Monemar, B., Bergman, J. P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Proc. Int. Symp. on Blue Laser and Light Emitting Diodes (Ohnisha, Tokyo, 1996), pp. 135.Google Scholar
41 Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
42 Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
43 Chichibu, S., Shikanai, A., Azuhata, T., Sota, T., Kuramata, A., Horino, K., and Nakamura, S., Appl. Phys. Lett. 68, 3766 (1996); A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).Google Scholar
44 Bastard, G., Mendez, E. E., Chang, L. L., and Esaki, L., Phys. Rev. B 26 (1982) 1974.Google Scholar
45 Miller, D. A. B., Chemla, D. S., and Schmitt-Rink, S., Phys. Rev. B 33 (1986) 6976.Google Scholar
46Eb in GaN / Al0.1Ga0.9N QW was calculated according to Ref. 44 using a variational method. We further consider the finite well potential. An usual variational function with two variational parameters was used as an envelop function of exciton, i.e. exp{-[r2/a2+(ze-zh)2/b2]}, where a and b are the variational parameters, r is the absolute value of the relative position of electron and hole in the QW plane, and ze (zh) is the transformed z coordinate of the electron (hole).Google Scholar
47 Walle, C. G. Van de and Neugebauer, J., Appl. Phys. Lett. 70, 2577 (1997).Google Scholar
48 Taguchi, T., presented at the 43rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Asaka, Japan, Mar.29, 1996 (unpublished).Google Scholar
49 Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 37, L1358 (1998).Google Scholar
50 Bulutay, C., Dagli, N., and Imamoklu, A., IEEE J. of Quantum Electron. QE (1999) (unpublished).Google Scholar
51 Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
52 Sugawara, M., Phys. Rev. B 51, 10743 (1995).Google Scholar
53 Rosner, S., Carr, E., Ludwise, M., Girolami, G., and Erikson, H., Appl. Phys. Lett. 70, 420 (1997).Google Scholar
54 Speck, J., Marchand, H., Kozodoy, P., Fini, P., Wu, X., Ibbetson, J., Keller, S., DenBaars, S., Mishra, U., and Rosner, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmnsha, Tokyo, 1998), pp. 37.Google Scholar
55 Sato, H., Sugahara, T., Naoi, Y, and Sakai, S., Jpn. J. Appl. Phys. 37, 2013 (1998).Google Scholar
56their results are summarized in Kisielowski, C., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 321.Google Scholar
57 Ponce, F., Galloway, S., Goetz, W., and Kern, R., Mater. Res. Soc. Symp. Proc. 482, 625 (1998).Google Scholar
58 Keller, S., Keller, B., Minsky, M., Bowers, J., Mishra, U., DenBaars, S., and Seifert, W, J. Cryst. Growth 189/190, 29 (1998).Google Scholar
59 Chichibu, S., Marchand, H., Keller, S., Fini, P., Ibbetson, J., Minsky, M., Fleischer, S., Speck, J., Bowers, J., Hu, E., Mishra, U., DenBaars, S., Deguchi, T., Sota, T., and Nakamura, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 604; Appl. Phys. Lett. 74,(1999) (unpublished).Google Scholar
60 Keller, S., Chichibu, S., Minsky, M., Hu, E., Mishra, U., and DenBaars, S., J. Crystal Growth (1998) (unpublished).Google Scholar
61 Mcluskey, M., Walle, C. Van de, Master, C., Romano, L., and Johnson, N., Appl. Phys. Lett. 72, 2725 (1998).Google Scholar
62 Domen, K., Kuramata, A., and Tanahashi, T., Appl. Phys. Lett. 72, 1359 (1998).Google Scholar