Skip to main content Accessibility help

Spectroscopic Studies in InGaN Quantum Wells

  • S. E Chichibu (a1) (a2), T. Sota (a1) (a2), K. Wada (a1) (a3), S. P DenBaars (a1) (a4) and S. Nakamura (a1) (a5)...


Fundamental electronic modulations in strained wurtzite If-nitride, in particular InxGa1-xN, quantum wells (QWs) were treated to explore the reason why practical InGaN devices emit bright luminescences in spite of the large threading dislocation (TD) density. The emission mechanisms were shown to vary depending on the well thickness L and InN molar fraction x. The electric field across the QW plane, F, which is a sum of the fields due to spontaneous and piezoelectric polarization and the pn junction field, causes the redshift of the ground state resonance energy through the quantum confined Stark effect (QCSE). The absorption spectrum is modulated by QCSE, quantum-confined Franz-Keldysh effect (QCFK), and Franz-Keldysh (FK) effect from the barrires when, for the first approximation, potential drop across the well (F/L) exceeds the valence band discontinuity, δEv. Under large F/L, holes are confined in the triangular potential well formed at one side of the well. This produces apparent Stokes-like shift in addition to the in-plane net Stokes shift on the absorption spectrum. The QCFK and FK further modulate the electronic structure of the wells with L greater than the three dimensional (3D) free exciton (FE) Bohr radius, aB. When F/L exceeds ΔEc, both electron (e) and hole (h) confined levels drop into the triangular potential wells at opposite sides of the wells, which reduces the wavefunction overlap. Doping of Si in the barriers partially screens the F resulting in a smaller Stokes-like shift, shorter recombination decay time, and higher emission efficiency. Finally, the use of InGaN was found to overcome the field-induced oscillator strength lowering due to the spontaneous and piezoelectric polarization. Effective in-plane localization of the QW excitons (confined excitons, or quantized excitons) in quantum disk (Q-disk) size potential minima, which are produced by nonrandom alloy potential fluctuation enhanced by the large bowing parameter and F, produces confined e-h pairs whose wavefunctions are still overlapped when L<aB. Their Coulomb interaction is more pronounced for F L<ΔEv.



Hide All
1 Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).
2for a review, Akasaki, I., and Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).
3 Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).
4 Itaya, K., Onomura, M., Nishio, J., Sugiura, L., Saito, S., Suzuki, M., Rennie, J., Nunoue, S., Yamamoto, M., Fujimoto, H., Kokubun, Y, Ohba, Y, Hatakoshi, G., and Ishikawa, M., Jpn. J. Appl. Phys. 35, L1315 (1996).
5 Bulman, G., Doverspike, K., Sheppard, S., Weeks, T., Kong, H., Dieringer, H., Edmond, J., Brown, J., Swindell, J., and Schetzina, J., Electron. Lett. 33, 1556 (1997).
6 Kuramata, A., Domen, K, Soejima, R., Horino, K., Kubota, S., and Tanahashi, T., Jpn. J. Appl. Phys. 36, LI130 (1997).
7 Mack, M., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U., Coldren, L., and DenBaars, S., MRS Internet J. Nitride Semicond. Res. 2, 41 (1997); J. Cryst. Growth 180/190, 837 (1998).
8 Nakamura, E, Kobayashi, T., Asatsuma, T., Funato, K., Yanashima, K., Hashimoto, S., Naganuma, K., Tomioka, S., Miyajiina, T., Morita, E., Kawai, H., and Ikeda, M., J. Cryst. Growth 180/190, 841 (1998).
9 Kneissl, M., Bour, D. P., Johnson, N. M., Romano, L. T., Krusor, B. S., Donaldson, R., Walker, J., and Dunnrowicz, C., Appl. Phys. Lett. 72, 1539 (1998).
10 , Yamada, Kaneko, Y., Watanabe, S., Yamaoka, Y, Hidaka, T., Nakagawa, S., Marenger, E., Takeuchi, T., Yamaguchi, S., Amano, H., and Akasaki, I., Proc. 10th IEEE Lasers and Electro-Optics Society Annual Meeting, San Francisco, USA, Nov. 10-13, 1997, PD1.2.
11application of LEO technique is introduced in several publications. For example, Bauser, E., Thin film growth techniques for low dimensional structures, eds. Farrow, R., Parkin, S., Dobson, P, Neave, J. and Arrott, A. (Plenum, New York, 1987), p. 171.
12 Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A., Jpn. J. Appl. Phys. 36, L899 (1997); A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259 (1997).
13 Zheleva, T., Nam, O-H., Bremser, M., and Davis, R., Appl. Phys. Lett. 71, 2472 (1997); O-H. Nam, M. Bremser, T. Zheleva, and R. Davis, Appl. Phys. Lett. 71, 2638 (1997).
14 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T, Kiyoku, H., Sugimoto, Y, Kozaki, T., Umemoto, H., Sano, M., and Chocho, K, Jpn. J. Appl. Phys. 36, L1568 (1997); Appl. Phys. Lett. 72,211(1998).
15 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 37, L309 (1998).
16 Marchand, H., lbbetson, J., Flni, P., Kozodoy, P., Keller, S., DenBaars, S., Speck, J., and Mishra, U., MRS Internet J. Nitride Semicond. Res. 3, 3 (1998); H. Marchand, X. H. Wu, J. Ibbetson, P Fini, P. Kozodoy, S. Keller, J. Speck, S. DenBaars, and U. Mishra, Appl. Phys. Lett. 73, 747 (1998).
17 Mukai, T., Morita, D., and Nakamura, S., J. Cryst. Growth 189/190,778 (1998).
18 Mukai, T., Narimatsu, H., and Nakamura, S., Jpn. J. Appl Phys. 37, L479 (1998).
19 Ponce, E and Bour, D., Nature 386, 351 (1997).
20 Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).
21 Bemardini, E, Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).
22polarity problem has been reviewed in Hellman, E., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).
23 Koukitsu, A., Takahashi, N., Taki, T., and Seki, H., Jpn. J. Appl Phys. 35, L673 (1996); I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
24 , Osamura, Naka, S., and Murakami, Y, J. Appl. Phys. 46, 3432 (1975); R. Singh, D. Doppalapudi, T D. Moustakas, and L. Romano, Appl. Phys. Lett. 70, 1089 (1997).
25properties of localized excitons in InGaN QWs are summarized in previous papers [Chichibu, S., Sota, T, Wada, K, and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998) and S. Chichibu, A. Abare, M. Mack, M. Minsky, T. Deguchi, D. Cohen, P Kozodoy, S. Fleischer, S. Keller, J. Speck, J. Bowers, E. Hu, U. Mishra, L. Coldren, S. DenBaars, K. Wada, T. Sota, and S. Nakamura, European Mater. Res. Soc. 98 Spring Meeting, Session L-IV.I, Strasbourg, France, June 16-19 (1998); Mater. Sci. Eng. B (1998; unpublished)]; original papers are S. Chichibu, T Azuhata, T. Sota, and S. Nakamura, Appli Phys. Lett. 69, 4188 (1996); 70, 2822 (1997); 73, 2006 (1998).
26 Jeon, E., Kozlov, V., Song, Y, Vertikov, A., Kuball, M., Nurmikko, A., Liu, H., Chen, C., Kern, R., Kuo, C., and Crawford, M., AppL Phys. Lett. 69, 4194 (1996); A. Vertikov, A. Nurmikko, K. Doverspike, G. Bulman, and J. Edmond, ibid 73, 493 (1998).
27 Narukawa, Y, Kawakami, Y, Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997); Y Narukawa, Y Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
28 Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W, Wood, T. H., and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).
29 Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997); T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997); C. Wetzel, H. Amano, I. Akasaki, T. Suski, J. Ager, E. Weber, E. Haller, and B. K. Meyer, Mater. Res. Soc. Syrup. Proc. 482, 489 (1998).
30 Bergman, J., Saksulv, N., Dalfors, J., Holtz, P., Monemar, B., Amano, H., and Akasaki, I., Mater. Res. Soc. Symp. Proc. 482, 631 (1998).
31 Im, J., Kolhner, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).
32 Deguchi, T., Azuhata, T., Sota, T., Chichibu, S., and Nakamura, S., Mater. Sci. Eng. B 50, 251 (1997); T. Deguchi, A. Shikanai, K. Torii, T. Sota, S. Chichibu, and S. Nakamura, Appl. Phys. Lett. 72, 3329 (1998).
33 Mohs, G., Aoki, T., Nagai, M., Shimano, R., K-Gonokami, M., and Nakamura, S., Solid State Commun. 104, 643 (1997).
34 Chichibu, S., Cohen, D., Mack, M., Abare, A., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J., Mishra, U., Coldren, L., Clarke, D., and DenBaars, S., Appl Phys. Lett. 73, 496 (1998).
35 Haug, H. and Koch, S., Quantum Theory of the Optical and Electronic Properties of Semiconductors, (World Scientific, Singapore, 1990); W Chow, S. W Koch, and M. Sargent I, Semiconductor-Laver Physics, (Springer, Berlin, 1994); W. Chow, A. Wright, and J. Nelson, Appl. Phys. Lett. 68, 296 (1996).
36 Frankowsky, G., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996).
37 Wiesmann, D., Brener, I., Pfeiffer, L., Kahn, M., and Sun, C., Appl. Phys. Lett. 69, 3384 (1996).
38 Kuball, M., Jeon, E., Song, Y., Nunnikko, A., Kozodoy, P., Abare, A., Keller, S., Coldren, L., Mishra, U., DenBaars, S., and Steigerwald, D., Appl. Phys. Lett. 70, 2580 (1997).
39 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., J. Appl. Phys. 79, 2784 (1996); Proc. Int. Symp. On Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), pp. 202; S. Chichibu, H. Okumura, S. Nakamura, G. Feuillet, T. Azuhata, T. Sota, and S. Yoshida, Jpn. J. Appl. Phys. 36, 1976 (1997).
40 Monemar, B., Bergman, J. P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Proc. Int. Symp. on Blue Laser and Light Emitting Diodes (Ohnisha, Tokyo, 1996), pp. 135.
41 Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).
42 Monemar, B., Phys. Rev. B 10, 676 (1974).
43 Chichibu, S., Shikanai, A., Azuhata, T., Sota, T., Kuramata, A., Horino, K., and Nakamura, S., Appl. Phys. Lett. 68, 3766 (1996); A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).
44 Bastard, G., Mendez, E. E., Chang, L. L., and Esaki, L., Phys. Rev. B 26 (1982) 1974.
45 Miller, D. A. B., Chemla, D. S., and Schmitt-Rink, S., Phys. Rev. B 33 (1986) 6976.
46Eb in GaN / Al0.1Ga0.9N QW was calculated according to Ref. 44 using a variational method. We further consider the finite well potential. An usual variational function with two variational parameters was used as an envelop function of exciton, i.e. exp{-[r2/a2+(ze-zh)2/b2]}, where a and b are the variational parameters, r is the absolute value of the relative position of electron and hole in the QW plane, and ze (zh) is the transformed z coordinate of the electron (hole).
47 Walle, C. G. Van de and Neugebauer, J., Appl. Phys. Lett. 70, 2577 (1997).
48 Taguchi, T., presented at the 43rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Asaka, Japan, Mar.29, 1996 (unpublished).
49 Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 37, L1358 (1998).
50 Bulutay, C., Dagli, N., and Imamoklu, A., IEEE J. of Quantum Electron. QE (1999) (unpublished).
51 Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).
52 Sugawara, M., Phys. Rev. B 51, 10743 (1995).
53 Rosner, S., Carr, E., Ludwise, M., Girolami, G., and Erikson, H., Appl. Phys. Lett. 70, 420 (1997).
54 Speck, J., Marchand, H., Kozodoy, P., Fini, P., Wu, X., Ibbetson, J., Keller, S., DenBaars, S., Mishra, U., and Rosner, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmnsha, Tokyo, 1998), pp. 37.
55 Sato, H., Sugahara, T., Naoi, Y, and Sakai, S., Jpn. J. Appl. Phys. 37, 2013 (1998).
56their results are summarized in Kisielowski, C., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 321.
57 Ponce, F., Galloway, S., Goetz, W., and Kern, R., Mater. Res. Soc. Symp. Proc. 482, 625 (1998).
58 Keller, S., Keller, B., Minsky, M., Bowers, J., Mishra, U., DenBaars, S., and Seifert, W, J. Cryst. Growth 189/190, 29 (1998).
59 Chichibu, S., Marchand, H., Keller, S., Fini, P., Ibbetson, J., Minsky, M., Fleischer, S., Speck, J., Bowers, J., Hu, E., Mishra, U., DenBaars, S., Deguchi, T., Sota, T., and Nakamura, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 604; Appl. Phys. Lett. 74,(1999) (unpublished).
60 Keller, S., Chichibu, S., Minsky, M., Hu, E., Mishra, U., and DenBaars, S., J. Crystal Growth (1998) (unpublished).
61 Mcluskey, M., Walle, C. Van de, Master, C., Romano, L., and Johnson, N., Appl. Phys. Lett. 72, 2725 (1998).
62 Domen, K., Kuramata, A., and Tanahashi, T., Appl. Phys. Lett. 72, 1359 (1998).

Related content

Powered by UNSILO

Spectroscopic Studies in InGaN Quantum Wells

  • S. E Chichibu (a1) (a2), T. Sota (a1) (a2), K. Wada (a1) (a3), S. P DenBaars (a1) (a4) and S. Nakamura (a1) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.