Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T23:09:31.422Z Has data issue: false hasContentIssue false

Spectroscopic Investigations of the Network Structure in Borovanadate Glasses

Published online by Cambridge University Press:  10 February 2011

O. Attos
Affiliation:
Laboratoire de Physique des Solides, Université Pierre et Marie Curie, associé au CNRS (ERS 113), 4 place Jussieu, 75252 Paris cedex 05, France
M. Massot
Affiliation:
Laboratoire de Physique des Solides, Université Pierre et Marie Curie, associé au CNRS (ERS 113), 4 place Jussieu, 75252 Paris cedex 05, France
H. S. Mavi
Affiliation:
Laboratoire de Physique des Solides, Université Pierre et Marie Curie, associé au CNRS (ERS 113), 4 place Jussieu, 75252 Paris cedex 05, France
C. Julien
Affiliation:
Laboratoire de Physique des Solides, Université Pierre et Marie Curie, associé au CNRS (ERS 113), 4 place Jussieu, 75252 Paris cedex 05, France
Get access

Abstract

Borovanadate glasses with mixed conductivity, i.e., simultaneous ionic and electronic carriers have been obtained in the system (100−x)[B2O3-Li2O]-xV2O5 (0 ≤ x ≤ 30 mole%). To understand the origin of the conductivity in these glasses, the compositional dependence of the network structure has been studied by Raman and infrared spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tulier, H.L., Button, D.P. and Uhlmann, D.R., J. Non-Cryst. Solids 40, 93 (1980).Google Scholar
[2] Sayer, M. and Mansingh, A., J. Non-Cryst. Solids 58, 91 (1983).Google Scholar
[3] Attos, O., Étude des phénomènes de transport dans les borovanadates. Thèse de l'UniversitéP. et M. Curie, Paris, 1995 (unpublished).Google Scholar
[4] Julien, C. and Nazri, G.A., Solid State Batteries: Material Design and Optimisation. Kluwer Academic Pubi., Boston, (1994).Google Scholar
[5] Marquardt, D. W, J. Soc. Ind. Appl. Math. 11, 431, (1963).Google Scholar
[6] Massot, M., Balkanski, M., Levasseur, A., Microionics - Solid State Integrable Batteries. edited by Balkanski, M. (Elsevier Sciences Publishers B. V., 1991), p. 139.Google Scholar
[7] de Waall, W and Hutter, C., Mat Res. Bull. 29, 843 (1994).Google Scholar
[8] Soppe, W., Kleerebezem, J. and den Hartog, H.W., J. Non-Cryst. Solids 93, 142 (1987).Google Scholar
[9] Hayakawa, S., Yoko, T. and Sakka, S., J. Non-Cryst. Solids 183, 73 (1995).Google Scholar
[10] Sanchez, C., Livage, J. and Lucazeau, G., J. Raman Spect. 12, 68 (1982).Google Scholar
[11] Dimitiev, Y., Dimitov, V., Arnaudov, M. and Topalov, D., J. Non-Cryst. Solids 57, 147 (1983).Google Scholar
[12] Massot, M., Julien, C. and Balkanski, M., Infrared Physics 29, 775 (1989).Google Scholar
[13] Zhonghong, J. and Yongxmg, T., J. Non-Cryst. Solids 146, 57 (1992).Google Scholar
[14] Attos, O., Massot, M., Balkanski, M., Haro-Poniatowski, E. and Asomoza, M., J. Non-Cryst. Solids (to be published).Google Scholar