Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T14:17:55.607Z Has data issue: false hasContentIssue false

Space-Charge-Limited Currents in n-i-n Devices Incorporating Glow-Discharge and Hot-Wire Deposited a-Si:H

Published online by Cambridge University Press:  15 February 2011

Edith C. Molenbroek
Affiliation:
Debye Institute, Utrecht University, P.O.Box, 80.000, 3508 TA Utrecht, the Netherlands
C. H. M. Van Der Werf
Affiliation:
Debye Institute, Utrecht University, P.O.Box, 80.000, 3508 TA Utrecht, the Netherlands
K. F. Feenstra
Affiliation:
Debye Institute, Utrecht University, P.O.Box, 80.000, 3508 TA Utrecht, the Netherlands
F. Rubinelli
Affiliation:
INTEC, Guemes 3450, 3000 Santa Fe, Argentina
R. E. I. Schropp
Affiliation:
Debye Institute, Utrecht University, P.O.Box, 80.000, 3508 TA Utrecht, the Netherlands
Get access

Abstract

Space-charge-limited currents have been examined in a wide variety of n-i-n devices. If the devices were completely symmetric, the current-voltage characteristics would be identical for positive and negative bias, but in several devices differences between the two polarities were observed. In order to understand in which part of the device these differences originate, the influence of the contacts and interfaces on the JV characteristics were examined by using different metal top contacts, different n-layers and different i-layers. Ag and Al top contacts gave minor differences between the polarities, whereas with Cr contacts no differences were observed. Incorporation of a defect layer in the i-layer results in asymmetric JV curves. We have observed a small asymmetry in an experimental device, and a large asymmetry using AMPS modeling. N-i-n devices appear to be a sensitive probe for interface defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rose, A., “Concepts in photoconductivity and allied problems”, vol. 19 of Interscience tracts on physics and astronomy, RCA Labs Interscience Publishers (1963).Google Scholar
2. e.g. Weisfield, R.L., J. Appl. Phys. 54 (11), 6401 (1983).Google Scholar
3. Blom, P. W. M., de Jong, M. J. M., Vleggaar, J. J. M., Appl. Phys. Lett. 68 (23), 3308 (1996).Google Scholar
4. Nešpurek, S., Sworakowski, J., J.Appl. Phys. 54 (11), 6401 (1983).Google Scholar
5. den Boer, W., Geerts, M. J., Ondris, M., Wentinck, H. M., J.Non Cryst. Solids 66, 363 (1984).Google Scholar
6. Oversluizen, G., van Kessel, R. P., Nieuwesteeg, K.J., Boogaard, J., J.Appl. Phys. 69 (5), 3082 (1991).Google Scholar
7. Lampert, M. A., Mark, P., “Current injection in solids”, Academic Press (New York, London), (1970).Google Scholar
8. von der Linden, M., Ph.D. thesis, Faculty of Physics, University of Utrecht (1994).Google Scholar
9. Smith, J. H., Fonash, S. J., J.Appl. Phys. 72 (11), 5305 (1992).Google Scholar
10. Schropp, R. E. I., Sluiter, A., von der Linden, M. B., Daey Ouwens, J., J.Non-Cryst. Solids 164–166, 709 (1993).Google Scholar
11. Mahan, A. H., Iwaniczko, E., Nelson, B. P., Reedy, R. C. Jr, Crandall, R. S., Proc. of the 25th IEEE PV Spec. Conference, Washington DC, 1996.Google Scholar
12. Branz, H. M., Crandall, R. S., Solar Cells, 27, 159 (1989).Google Scholar