Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:06:16.226Z Has data issue: false hasContentIssue false

Some Theoretical Aspects of Carbon Incorporation into III-V“s

Published online by Cambridge University Press:  22 February 2011

Markus Weyers*
Affiliation:
Ferdinand-Braun-Institut fur Höchstfrequenztechnik, Rudower Chaussee 5, D-O-1199 Berlin, Fed. Rep. Germany, Fax: +49–30–6704 4542
Get access

Abstract

Carbon as a constituent of some of the source molecules is always present in the metalorganic growth techniques and can potentially be incorporated into the grown layers. Unintentional carbon incorporation as well as intentional carbon doping of III-V compounds has been studied intensely, especially in the case of GaAs. However, a number of experimental findings still is not well understood. Besides the different electrical behavior of carbon in different host materials (acceptor in GaAs, donor in InAs) also the different probability of incorporation into, for example, GaAs compared to InAs is currently not well explained. Model calculations may provide useful hints to enhance the understanding of the experimentally observed trends. In this paper, two different approaches will be reviewed and their results will be discussed.

The first approach is dealing with the expected incorporation site of carbon in III-V“s. The change in total energy associated with substitutional carbon incorporation onto group III or group V lattice sites has been calculated. From this change the conduction type of carbon doped arsenides and phosphides (except for InAs) can correctly be predicted. While this method is dealing with the bulk semiconductor, the second approach attempts to model the binding energy of methyl to atoms on the growing surface. By using appropriate molecules the methyl bond strength can be estimated. Both approaches together provide a basis for a more complete understanding of carbon incorporation behavior in III-V compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiu, T.H., Cunningham, J.E., Ditzenberger, J.A., Jan, W.Y. and Chu, S.N.G., J. Crystal Growth 111, 274 (1991).Google Scholar
2. Weyers, M., Piitz, N., Heinecke, H., Heyen, M., Liith, H. and Balk, P., J. Electron. Mater. 15, 57 (1986).Google Scholar
3. Konagai, M., Yamada, T., Akatsuka, T., Saito, K, Tokumitsu, E. and Takahashi, K., J. Crystal Growth 98, 167 (1989).Google Scholar
4. Ito, H. and Ishibashi, T., Japan. J. Appl. Phys. 30, L944 (1991).Google Scholar
5. Buchan, N.I., Kuech, T.F., Scilla, G. and Cardone, F., J. Crystal Growth 110, 405 (1991).Google Scholar
6. Ito, H. and Makimoto, T., Appl. Phys. Letters 58, 2770 (1991).Google Scholar
7. Hoke, W.E., Lemonias, P.J., Lyman, P.S., Hendriks, H.T., Weir, D. and Colombo, P., J. Crystal Growth 111, 269 (1991).Google Scholar
8. Ren, F., Abernathy, C.R., Pearton, S.J., Fullowan, T.R., Lothian, J. and Jordan, A.S., Electron. Lett. 26, 724 (1990).Google Scholar
9. Pearton, S.J., Chakrabarti, U.K., Abernathy, C.R. and Hobson, W.S., Appl. Phys. Letters 55, 2014 (1989).Google Scholar
10. de Lyon, T.J., Buchan, N.I., Kirchner, P.D., Woodall, J.M., Mclnturff, D.T., Scilla, G.J. and Cardone, F., J. Crystal Growth 111, 564 (1991).Google Scholar
11. Kamp, M., Weyers, M., Heinecke, H., Lüth, H. and Balk, P., J. Crystal Growth 105, 178 (1990).Google Scholar
12. Chiu, T.H. and Ditzenberger, J.A., Appl. Phys. Letters 56, 2219 (1990).Google Scholar
13. Weyers, M. and Shiraishi, K, Japan. J. Appl. Phys. 31, 2483 (1992).Google Scholar
14. Pütz, N., Heinecke, H., Weyers, M., Heyen, M., Lüth, H. and Balk, P., J. Crystal Growth 74, 292 (1986).Google Scholar
15. Weyers, M. and Sato, M. in Advanced III-V Compound Semiconductor Growth, Processing and Devices, edited by Pearton, S.J., Sadana, D.K. and Zavada, J.M. (Mater. Res. Soc. Proc. 240, Pittsburgh, PA, 1992) pp. 2732.Google Scholar
16. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, San Diego, 1989).Google Scholar
17. Weyers, M. and Maxka, J., to be published.Google Scholar
18. Weyers, M., Progress in Crystal Growth and Characterization 19, 83 (1989).Google Scholar
19. de Lyon, T.J., Woodall, J.M., Goorsky, M.S. and Kirchner, P.D., Appl. Phys. Letters 56, 1040 (1990).Google Scholar
20. Abernathy, C.R., Pearton, S.J., Manasreh, M.O., Fischer, D.W. and Talwar, D.N., Appl. Phys. Letters 57, 294 (1990).Google Scholar
21. Abernathy, C.R., Pearton, S.J., Caruso, R., Ren, F. and Kovalchik, J., Appl. Phys. Letters 55, 1750 (1989).Google Scholar
22. Weyers, M. and Sato, M., J. Crystal Growth 115, 469 (1991).Google Scholar
23. de Lyon, T.J., Woodall, J.M., Kirchner, P.D., Mclnturff, D.T., Scilla, G.J. and Cardone, F., J. Vac. Sci. Technol. B9, 136 (1991).Google Scholar
24. Benchimol, J.L., Alaoui, F., Gao, Y., Roux, G.L., Rao, E.V.K. and Alexandre, F., J. Crystal Growth 105, 135 (1990).Google Scholar
25. Marx, D., Weyers, M. and Balk, P., unpublished results.Google Scholar
26. Kamp, M., Contini, R., Werner, K, Heinecke, H., Weyers, M., Lüth, H. and Balk, P., J. Crystal Growth 95, 154 (1989).Google Scholar
27. Kuech, T.F., Veuhoff, E., Kuan, T.S., Deline, V. and Potemski, R., J. Crystal Growth 77, 257 (1986).Google Scholar
28. Tsuda, M., Oikawa, S., Morishita, M. and Mashita, M., Japan. J. Appl. Phys. 26, L564 (1987).Google Scholar