Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T10:07:28.547Z Has data issue: false hasContentIssue false

Solutions to Gate Oxide Integrity on TFSOI Substrates Caused by PMOS Threshold-Voltage Implant

Published online by Cambridge University Press:  10 February 2011

S. Q. Hong
Affiliation:
Semi∼conductor Products Sector, Motorola Inc., 2100 E. Elliot Road, Tempe, AZ 85284
T. Wetteroth
Affiliation:
Semi∼conductor Products Sector, Motorola Inc., 2100 E. Elliot Road, Tempe, AZ 85284
S. R. Wilson
Affiliation:
Semi∼conductor Products Sector, Motorola Inc., 2100 E. Elliot Road, Tempe, AZ 85284
B. Steele
Affiliation:
Semi∼conductor Products Sector, Motorola Inc., 2100 E. Elliot Road, Tempe, AZ 85284
D. K. Schroder
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287
Get access

Abstract

Due to the lack of effective gettering, gate oxide on thin-film-silicon-on-insulator (TFSOI) substrates is much more sensitive than its bulk Si counterpart to process damage during device fabrication, especially prior to gate oxide growth. Presented in this paper as a typical example is the severe oxide degradation caused by PMOS threshold-voltage implant. Several approaches to circumvent this problem are explored, such as Vt implant without sacrificial oxide (sacox), low temperature anneal before sacox removal, or implementation of lateral gettering. As a result of these efforts, a significant improvement in gate oxide integrity is achieved with increased oxide breakdown voltages and charge-to-breakdowns, as well as a reduction in oxide charge trapping. This work also demonstrates the feasibility of achieving bulk-comparable gate oxide on TFSOI substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hong, S. Q., Wetteroth, T., Shin, H., Wilson, S. R., Huang, W. M., Foerstner, J., Racanelli, M., Shin, H.C., Hwang, B.-Y., and Schroder, D.K., Proc. of 1995 IEEE SOI Conf. 22 (1995).Google Scholar
2. Hong, S. Q., Wetteroth, T., Shin, H., Wilson, S. R., Werho, D., Lee, T.-C., and Schroder, D.K., Appl. Phys. Lett. 71, 3397 (1997).Google Scholar
3. Racanelli, M., Huang, W. M., Shin, H.C., Foerstner, J., Hwang, B.-Y., Cheng, S., Fejes, P., Park, H., Wetteroth, T., Hong, S., Shin, H., and Wilson, S.R., Proc. of 1995 IEDM Conf., 885 (1995).Google Scholar
4. Uedono, A., Ujihira, Y., Ikari, A., Haga, H., and Yoda, O., Hyperfine Interactions 79, 615 (1993).Google Scholar
5. Christel, L. A. and Gibbons, J. F., Nuclear Instr. and Methods 182/183, 187 (1981).Google Scholar
6. Saito, M., Jablonski, J., Katayama, T., Miyamura, Y., Ikegrya, K. and Imai, M., Jpn. J. Appl. Phys. 35, L359 (1996).Google Scholar
7. Moline, R. A. and Cullis, A. G., Appl. Phys. Lett. 26, 551 (1975).Google Scholar
8. Uedono, A., Kitano, T., Watanabe, M., Moriya, T., Kawana, T., Tanigawa, S., Suzuki, R., Ohdaira, T. and Mikada, T., Jpn. J. APPL. Phys. 35, 2000 (1996).Google Scholar
9. Fan anol, D. Jaccodine, R., Appl. Phys. Lett. 54, 603 (1989).Google Scholar
10. Saito, M., Jablonski, J., Katayama, T., Miyamura, Y., Ikegrya, K. and Imai, M., Jpn. J. Appl. Phys. 35, L359 (1996).Google Scholar
11. Uedono, A., Kawano, T., Wei, L., Tanigawa, S., Ikari, A., Kawakami, K. and Itoh, H., Jpn. J. Appl. Phys. 33, L1131 (1994).Google Scholar
12. Magee, T. J., Leung, C., Kawayoshi, H., Palkuti, L. J., Furman, B. K., Evans, C. A. Jr., Christel, L. A., Gibbons, J. F., and Day, D. S., Appl. Phys. Lett. 39, 564 (1981).Google Scholar
13. Satoh, Y., Murakami, Y., Furuya, H. and Shingyouji, T., Appl. Phys. Lett. 64, 303 (1994).Google Scholar
14. Magee, T. J., Leung, C., Kawayoshi, H., Furman, B. K., Evans, C. A. Jr., and Day, D. S., J. Appl. Phys. Lett. 39, 260 (1981).Google Scholar
15. Magee, T. J., Leung, C., Kawayoshi, H., Ormond, R., Furman, B. K., Evans, C. A. Jr., and Day, D. S., Appl. Phys. Lett. 39, 413 (1981).Google Scholar
16. Kamins, T. I. and Chiang, S. Y., Mat. Res. Symp. Proc. 53, 239 (1986).Google Scholar
17. Shabani, M. B., Yoshimi, T., Abe, H., Nakai, T., and Cordts, B., ECS Proc. 96 (3), 162 (1996).Google Scholar
18. Koveshnikov, S., Agarwal, A., Beaman, K. and Rozgonyi, G. A., Solid State Phenomena 47–48, 183 (1995).Google Scholar
19. Beaman, K. L., Kononchuk, O. V., Koveshnikov, S. V. and Rozgonyi, G. A., Abstract of Full ECS Conf. No. 1992, 2311 (1997).Google Scholar
20. Tseng, H.-H., Tobin, P. J., and Hong, S. Q., Proc. of 1995 IEEE SOI Conf., 56 (1995).Google Scholar